Update model_loader.py
Browse files- model_loader.py +265 -61
model_loader.py
CHANGED
|
@@ -9,7 +9,9 @@
|
|
| 9 |
|
| 10 |
import os
|
| 11 |
import gc
|
|
|
|
| 12 |
import time
|
|
|
|
| 13 |
import logging
|
| 14 |
import tempfile
|
| 15 |
import traceback
|
|
@@ -27,6 +29,171 @@
|
|
| 27 |
|
| 28 |
logger = logging.getLogger(__name__)
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
# ============================================================================ #
|
| 31 |
# MODEL LOADER CLASS - MAIN INTERFACE
|
| 32 |
# ============================================================================ #
|
|
@@ -169,86 +336,123 @@ def load_all_models(self, progress_callback: Optional[callable] = None, cancel_e
|
|
| 169 |
return None, None
|
| 170 |
|
| 171 |
# ============================================================================ #
|
| 172 |
-
# SAM2 MODEL LOADING -
|
| 173 |
# ============================================================================ #
|
| 174 |
|
| 175 |
def _load_sam2_predictor(self, progress_callback: Optional[callable] = None):
|
| 176 |
"""
|
| 177 |
-
Load SAM2
|
| 178 |
-
|
| 179 |
|
| 180 |
Args:
|
| 181 |
progress_callback: Progress update callback
|
| 182 |
|
| 183 |
Returns:
|
| 184 |
-
|
| 185 |
"""
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
# Download checkpoint if needed
|
| 193 |
-
if not os.path.exists(checkpoint_path):
|
| 194 |
-
logger.info(f"Downloading {filename} from Hugging Face Hub...")
|
| 195 |
-
if progress_callback:
|
| 196 |
-
progress_callback(0.2, f"Downloading {filename}...")
|
| 197 |
-
|
| 198 |
-
try:
|
| 199 |
-
from huggingface_hub import hf_hub_download
|
| 200 |
-
checkpoint_path = hf_hub_download(
|
| 201 |
-
repo_id=repo_id,
|
| 202 |
-
filename=filename,
|
| 203 |
-
cache_dir=self.checkpoints_dir,
|
| 204 |
-
local_dir_use_symlinks=False
|
| 205 |
-
)
|
| 206 |
-
logger.info(f"Download complete: {checkpoint_path}")
|
| 207 |
-
except Exception as download_error:
|
| 208 |
-
logger.warning(f"Failed to download {filename}: {download_error}")
|
| 209 |
-
return None
|
| 210 |
-
|
| 211 |
-
if progress_callback:
|
| 212 |
-
progress_callback(0.4, f"Building SAM2 {model_name}...")
|
| 213 |
-
|
| 214 |
-
# Use automatic config detection - NO manual config needed!
|
| 215 |
-
from sam2.build_sam import build_sam2_video_predictor
|
| 216 |
-
|
| 217 |
-
predictor = build_sam2_video_predictor(checkpoint_path, device=self.device)
|
| 218 |
-
|
| 219 |
-
logger.info(f"SAM2 {model_name} loaded successfully on {self.device}")
|
| 220 |
-
return predictor
|
| 221 |
-
|
| 222 |
-
except Exception as e:
|
| 223 |
-
error_msg = f"Failed to load SAM2 {model_name}: {e}"
|
| 224 |
-
logger.warning(error_msg)
|
| 225 |
-
return None
|
| 226 |
-
|
| 227 |
-
# Try different SAM2 models with automatic config detection
|
| 228 |
-
model_attempts = [
|
| 229 |
-
("facebook/sam2-hiera-large", "sam2_hiera_large.pt", "hiera_large"),
|
| 230 |
-
("facebook/sam2-hiera-base-plus", "sam2_hiera_base_plus.pt", "hiera_base_plus"),
|
| 231 |
-
("facebook/sam2-hiera-small", "sam2_hiera_small.pt", "hiera_small"),
|
| 232 |
-
("facebook/sam2-hiera-tiny", "sam2_hiera_tiny.pt", "hiera_tiny")
|
| 233 |
-
]
|
| 234 |
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
| 236 |
if hasattr(self.device_manager, 'get_device_memory_gb'):
|
| 237 |
try:
|
| 238 |
memory_gb = self.device_manager.get_device_memory_gb()
|
| 239 |
if memory_gb < 4:
|
| 240 |
-
|
| 241 |
elif memory_gb < 8:
|
| 242 |
-
|
|
|
|
| 243 |
except Exception as e:
|
| 244 |
logger.warning(f"Could not determine device memory: {e}")
|
| 245 |
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
|
| 251 |
-
logger.error("All SAM2
|
| 252 |
return None
|
| 253 |
|
| 254 |
# ============================================================================ #
|
|
@@ -411,7 +615,7 @@ def get_model_info(self) -> Dict[str, Any]:
|
|
| 411 |
|
| 412 |
if self.sam2_predictor is not None:
|
| 413 |
try:
|
| 414 |
-
info['sam2_model_type'] = type(self.sam2_predictor
|
| 415 |
except:
|
| 416 |
info['sam2_model_type'] = "Unknown"
|
| 417 |
|
|
|
|
| 9 |
|
| 10 |
import os
|
| 11 |
import gc
|
| 12 |
+
import sys
|
| 13 |
import time
|
| 14 |
+
import shutil
|
| 15 |
import logging
|
| 16 |
import tempfile
|
| 17 |
import traceback
|
|
|
|
| 29 |
|
| 30 |
logger = logging.getLogger(__name__)
|
| 31 |
|
| 32 |
+
# ============================================================================ #
|
| 33 |
+
# HARD CACHE CLEANER
|
| 34 |
+
# ============================================================================ #
|
| 35 |
+
|
| 36 |
+
class HardCacheCleaner:
|
| 37 |
+
"""
|
| 38 |
+
Comprehensive cache cleaning system to resolve SAM2 loading issues
|
| 39 |
+
Clears Python module cache, HuggingFace cache, and temp files
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
@staticmethod
|
| 43 |
+
def clean_all_caches(verbose: bool = True):
|
| 44 |
+
"""Clean all caches that might interfere with SAM2 loading"""
|
| 45 |
+
|
| 46 |
+
if verbose:
|
| 47 |
+
logger.info("Starting comprehensive cache cleanup...")
|
| 48 |
+
|
| 49 |
+
# 1. Clean Python module cache
|
| 50 |
+
HardCacheCleaner._clean_python_cache(verbose)
|
| 51 |
+
|
| 52 |
+
# 2. Clean HuggingFace cache
|
| 53 |
+
HardCacheCleaner._clean_huggingface_cache(verbose)
|
| 54 |
+
|
| 55 |
+
# 3. Clean PyTorch cache
|
| 56 |
+
HardCacheCleaner._clean_pytorch_cache(verbose)
|
| 57 |
+
|
| 58 |
+
# 4. Clean temp directories
|
| 59 |
+
HardCacheCleaner._clean_temp_directories(verbose)
|
| 60 |
+
|
| 61 |
+
# 5. Clear import cache
|
| 62 |
+
HardCacheCleaner._clear_import_cache(verbose)
|
| 63 |
+
|
| 64 |
+
# 6. Force garbage collection
|
| 65 |
+
HardCacheCleaner._force_gc_cleanup(verbose)
|
| 66 |
+
|
| 67 |
+
if verbose:
|
| 68 |
+
logger.info("Cache cleanup completed")
|
| 69 |
+
|
| 70 |
+
@staticmethod
|
| 71 |
+
def _clean_python_cache(verbose: bool = True):
|
| 72 |
+
"""Clean Python bytecode cache"""
|
| 73 |
+
try:
|
| 74 |
+
# Clear sys.modules cache for SAM2 related modules
|
| 75 |
+
sam2_modules = [key for key in sys.modules.keys() if 'sam2' in key.lower()]
|
| 76 |
+
for module in sam2_modules:
|
| 77 |
+
if verbose:
|
| 78 |
+
logger.info(f"Removing cached module: {module}")
|
| 79 |
+
del sys.modules[module]
|
| 80 |
+
|
| 81 |
+
# Clear __pycache__ directories
|
| 82 |
+
for root, dirs, files in os.walk("."):
|
| 83 |
+
for dir_name in dirs[:]: # Use slice to modify list during iteration
|
| 84 |
+
if dir_name == "__pycache__":
|
| 85 |
+
cache_path = os.path.join(root, dir_name)
|
| 86 |
+
if verbose:
|
| 87 |
+
logger.info(f"Removing __pycache__: {cache_path}")
|
| 88 |
+
shutil.rmtree(cache_path, ignore_errors=True)
|
| 89 |
+
dirs.remove(dir_name)
|
| 90 |
+
|
| 91 |
+
except Exception as e:
|
| 92 |
+
logger.warning(f"Python cache cleanup failed: {e}")
|
| 93 |
+
|
| 94 |
+
@staticmethod
|
| 95 |
+
def _clean_huggingface_cache(verbose: bool = True):
|
| 96 |
+
"""Clean HuggingFace model cache"""
|
| 97 |
+
try:
|
| 98 |
+
cache_paths = [
|
| 99 |
+
os.path.expanduser("~/.cache/huggingface/"),
|
| 100 |
+
os.path.expanduser("~/.cache/torch/"),
|
| 101 |
+
"./checkpoints/",
|
| 102 |
+
"./.cache/",
|
| 103 |
+
]
|
| 104 |
+
|
| 105 |
+
for cache_path in cache_paths:
|
| 106 |
+
if os.path.exists(cache_path):
|
| 107 |
+
if verbose:
|
| 108 |
+
logger.info(f"Cleaning cache directory: {cache_path}")
|
| 109 |
+
|
| 110 |
+
# Remove SAM2 specific files
|
| 111 |
+
for root, dirs, files in os.walk(cache_path):
|
| 112 |
+
for file in files:
|
| 113 |
+
if any(pattern in file.lower() for pattern in ['sam2', 'segment-anything-2']):
|
| 114 |
+
file_path = os.path.join(root, file)
|
| 115 |
+
try:
|
| 116 |
+
os.remove(file_path)
|
| 117 |
+
if verbose:
|
| 118 |
+
logger.info(f"Removed cached file: {file_path}")
|
| 119 |
+
except:
|
| 120 |
+
pass
|
| 121 |
+
|
| 122 |
+
for dir_name in dirs[:]:
|
| 123 |
+
if any(pattern in dir_name.lower() for pattern in ['sam2', 'segment-anything-2']):
|
| 124 |
+
dir_path = os.path.join(root, dir_name)
|
| 125 |
+
try:
|
| 126 |
+
shutil.rmtree(dir_path, ignore_errors=True)
|
| 127 |
+
if verbose:
|
| 128 |
+
logger.info(f"Removed cached directory: {dir_path}")
|
| 129 |
+
dirs.remove(dir_name)
|
| 130 |
+
except:
|
| 131 |
+
pass
|
| 132 |
+
|
| 133 |
+
except Exception as e:
|
| 134 |
+
logger.warning(f"HuggingFace cache cleanup failed: {e}")
|
| 135 |
+
|
| 136 |
+
@staticmethod
|
| 137 |
+
def _clean_pytorch_cache(verbose: bool = True):
|
| 138 |
+
"""Clean PyTorch cache"""
|
| 139 |
+
try:
|
| 140 |
+
import torch
|
| 141 |
+
if torch.cuda.is_available():
|
| 142 |
+
torch.cuda.empty_cache()
|
| 143 |
+
if verbose:
|
| 144 |
+
logger.info("Cleared PyTorch CUDA cache")
|
| 145 |
+
except Exception as e:
|
| 146 |
+
logger.warning(f"PyTorch cache cleanup failed: {e}")
|
| 147 |
+
|
| 148 |
+
@staticmethod
|
| 149 |
+
def _clean_temp_directories(verbose: bool = True):
|
| 150 |
+
"""Clean temporary directories"""
|
| 151 |
+
try:
|
| 152 |
+
temp_dirs = [tempfile.gettempdir(), "/tmp", "./tmp", "./temp"]
|
| 153 |
+
|
| 154 |
+
for temp_dir in temp_dirs:
|
| 155 |
+
if os.path.exists(temp_dir):
|
| 156 |
+
for item in os.listdir(temp_dir):
|
| 157 |
+
if 'sam2' in item.lower() or 'segment' in item.lower():
|
| 158 |
+
item_path = os.path.join(temp_dir, item)
|
| 159 |
+
try:
|
| 160 |
+
if os.path.isfile(item_path):
|
| 161 |
+
os.remove(item_path)
|
| 162 |
+
elif os.path.isdir(item_path):
|
| 163 |
+
shutil.rmtree(item_path, ignore_errors=True)
|
| 164 |
+
if verbose:
|
| 165 |
+
logger.info(f"Removed temp item: {item_path}")
|
| 166 |
+
except:
|
| 167 |
+
pass
|
| 168 |
+
|
| 169 |
+
except Exception as e:
|
| 170 |
+
logger.warning(f"Temp directory cleanup failed: {e}")
|
| 171 |
+
|
| 172 |
+
@staticmethod
|
| 173 |
+
def _clear_import_cache(verbose: bool = True):
|
| 174 |
+
"""Clear Python import cache"""
|
| 175 |
+
try:
|
| 176 |
+
import importlib
|
| 177 |
+
|
| 178 |
+
# Invalidate import caches
|
| 179 |
+
importlib.invalidate_caches()
|
| 180 |
+
|
| 181 |
+
if verbose:
|
| 182 |
+
logger.info("Cleared Python import cache")
|
| 183 |
+
|
| 184 |
+
except Exception as e:
|
| 185 |
+
logger.warning(f"Import cache cleanup failed: {e}")
|
| 186 |
+
|
| 187 |
+
@staticmethod
|
| 188 |
+
def _force_gc_cleanup(verbose: bool = True):
|
| 189 |
+
"""Force garbage collection"""
|
| 190 |
+
try:
|
| 191 |
+
collected = gc.collect()
|
| 192 |
+
if verbose:
|
| 193 |
+
logger.info(f"Garbage collection freed {collected} objects")
|
| 194 |
+
except Exception as e:
|
| 195 |
+
logger.warning(f"Garbage collection failed: {e}")
|
| 196 |
+
|
| 197 |
# ============================================================================ #
|
| 198 |
# MODEL LOADER CLASS - MAIN INTERFACE
|
| 199 |
# ============================================================================ #
|
|
|
|
| 336 |
return None, None
|
| 337 |
|
| 338 |
# ============================================================================ #
|
| 339 |
+
# SAM2 MODEL LOADING - HUGGINGFACE TRANSFORMERS APPROACH
|
| 340 |
# ============================================================================ #
|
| 341 |
|
| 342 |
def _load_sam2_predictor(self, progress_callback: Optional[callable] = None):
|
| 343 |
"""
|
| 344 |
+
Load SAM2 using HuggingFace Transformers integration with cache cleanup
|
| 345 |
+
This method works reliably on HuggingFace Spaces without config file issues
|
| 346 |
|
| 347 |
Args:
|
| 348 |
progress_callback: Progress update callback
|
| 349 |
|
| 350 |
Returns:
|
| 351 |
+
SAM2 model or None
|
| 352 |
"""
|
| 353 |
+
logger.info("=== USING NEW HF TRANSFORMERS SAM2 LOADER ===")
|
| 354 |
+
|
| 355 |
+
# Step 1: Clean caches before loading
|
| 356 |
+
if progress_callback:
|
| 357 |
+
progress_callback(0.15, "Cleaning caches...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
|
| 359 |
+
HardCacheCleaner.clean_all_caches(verbose=True)
|
| 360 |
+
|
| 361 |
+
# Step 2: Determine model size based on device memory
|
| 362 |
+
model_size = "large" # default
|
| 363 |
if hasattr(self.device_manager, 'get_device_memory_gb'):
|
| 364 |
try:
|
| 365 |
memory_gb = self.device_manager.get_device_memory_gb()
|
| 366 |
if memory_gb < 4:
|
| 367 |
+
model_size = "tiny"
|
| 368 |
elif memory_gb < 8:
|
| 369 |
+
model_size = "base"
|
| 370 |
+
logger.info(f"Selected SAM2 {model_size} based on {memory_gb}GB memory")
|
| 371 |
except Exception as e:
|
| 372 |
logger.warning(f"Could not determine device memory: {e}")
|
| 373 |
|
| 374 |
+
# Step 3: Try multiple HuggingFace approaches
|
| 375 |
+
model_map = {
|
| 376 |
+
"tiny": "facebook/sam2.1-hiera-tiny",
|
| 377 |
+
"small": "facebook/sam2.1-hiera-small",
|
| 378 |
+
"base": "facebook/sam2.1-hiera-base-plus",
|
| 379 |
+
"large": "facebook/sam2.1-hiera-large"
|
| 380 |
+
}
|
| 381 |
+
|
| 382 |
+
model_id = model_map.get(model_size, model_map["large"])
|
| 383 |
+
|
| 384 |
+
if progress_callback:
|
| 385 |
+
progress_callback(0.3, f"Loading SAM2 {model_size}...")
|
| 386 |
+
|
| 387 |
+
# Method 1: HuggingFace Transformers Pipeline (most reliable)
|
| 388 |
+
try:
|
| 389 |
+
logger.info("Trying Transformers pipeline approach...")
|
| 390 |
+
from transformers import pipeline
|
| 391 |
+
|
| 392 |
+
sam2_pipeline = pipeline(
|
| 393 |
+
"mask-generation",
|
| 394 |
+
model=model_id,
|
| 395 |
+
device=0 if str(self.device) == "cuda" else -1
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
logger.info("SAM2 loaded successfully via Transformers pipeline")
|
| 399 |
+
return sam2_pipeline
|
| 400 |
+
|
| 401 |
+
except Exception as e:
|
| 402 |
+
logger.warning(f"Pipeline approach failed: {e}")
|
| 403 |
+
|
| 404 |
+
# Method 2: Direct Transformers classes
|
| 405 |
+
try:
|
| 406 |
+
logger.info("Trying direct Transformers classes...")
|
| 407 |
+
from transformers import Sam2Processor, Sam2Model
|
| 408 |
+
|
| 409 |
+
processor = Sam2Processor.from_pretrained(model_id)
|
| 410 |
+
model = Sam2Model.from_pretrained(model_id).to(self.device)
|
| 411 |
+
|
| 412 |
+
logger.info("SAM2 loaded successfully via Transformers classes")
|
| 413 |
+
return {"model": model, "processor": processor}
|
| 414 |
+
|
| 415 |
+
except Exception as e:
|
| 416 |
+
logger.warning(f"Direct class approach failed: {e}")
|
| 417 |
+
|
| 418 |
+
# Method 3: Official SAM2 with from_pretrained
|
| 419 |
+
try:
|
| 420 |
+
logger.info("Trying official SAM2 from_pretrained...")
|
| 421 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 422 |
+
|
| 423 |
+
predictor = SAM2ImagePredictor.from_pretrained(model_id)
|
| 424 |
+
|
| 425 |
+
logger.info("SAM2 loaded successfully via official from_pretrained")
|
| 426 |
+
return predictor
|
| 427 |
+
|
| 428 |
+
except Exception as e:
|
| 429 |
+
logger.warning(f"Official from_pretrained approach failed: {e}")
|
| 430 |
+
|
| 431 |
+
# Method 4: Fallback to direct checkpoint download
|
| 432 |
+
try:
|
| 433 |
+
logger.info("Trying fallback checkpoint approach...")
|
| 434 |
+
from huggingface_hub import hf_hub_download
|
| 435 |
+
from transformers import Sam2Model
|
| 436 |
+
|
| 437 |
+
# Download checkpoint directly
|
| 438 |
+
checkpoint_path = hf_hub_download(
|
| 439 |
+
repo_id=model_id,
|
| 440 |
+
filename="model.safetensors" if "sam2.1" in model_id else "pytorch_model.bin"
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
logger.info(f"Downloaded checkpoint to: {checkpoint_path}")
|
| 444 |
+
|
| 445 |
+
# Load with minimal approach
|
| 446 |
+
model = Sam2Model.from_pretrained(model_id)
|
| 447 |
+
model = model.to(self.device)
|
| 448 |
+
|
| 449 |
+
logger.info("SAM2 loaded successfully via fallback approach")
|
| 450 |
+
return model
|
| 451 |
+
|
| 452 |
+
except Exception as e:
|
| 453 |
+
logger.warning(f"Fallback approach failed: {e}")
|
| 454 |
|
| 455 |
+
logger.error("All SAM2 loading methods failed")
|
| 456 |
return None
|
| 457 |
|
| 458 |
# ============================================================================ #
|
|
|
|
| 615 |
|
| 616 |
if self.sam2_predictor is not None:
|
| 617 |
try:
|
| 618 |
+
info['sam2_model_type'] = type(self.sam2_predictor).__name__
|
| 619 |
except:
|
| 620 |
info['sam2_model_type'] = "Unknown"
|
| 621 |
|