MogensR commited on
Commit
3790c48
Β·
1 Parent(s): d38f2ff

Create utils/background_factory.py

Browse files
Files changed (1) hide show
  1. utils/background_factory.py +201 -0
utils/background_factory.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ utils.background_factory
4
+ ─────────────────────────────────────────────────────────────────────────────
5
+ Generates professional backgrounds from presets **or** a user-supplied image.
6
+
7
+ Public API
8
+ ----------
9
+ create_professional_background(cfg_or_key, width, height) β†’ np.ndarray (BGR)
10
+
11
+ All lower-case helpers are considered private to this module.
12
+ """
13
+
14
+ from __future__ import annotations
15
+ from pathlib import Path
16
+ from typing import Dict, Any, List, Tuple, Optional
17
+ import logging, os, cv2, numpy as np
18
+
19
+ from utils.background_presets import PROFESSIONAL_BACKGROUNDS
20
+
21
+ log = logging.getLogger(__name__)
22
+
23
+ __all__ = ["create_professional_background"]
24
+
25
+ # ────────────────────────────────────────────────────────────────────────────
26
+ # Main entry
27
+ # ────────────────────────────────────────────────────────────────────────────
28
+ def create_professional_background(
29
+ bg_config: Dict[str, Any] | str,
30
+ width: int,
31
+ height: int,
32
+ ) -> np.ndarray:
33
+ """
34
+ Accepts either …
35
+ β€’ a **key** into PROFESSIONAL_BACKGROUNDS (e.g. "office_modern"), or
36
+ β€’ a **dict** (typically supplied by UI) that may include:
37
+ ─ background_choice: "office_modern"
38
+ ─ custom_path: "/path/to/image.png"
39
+ ─ OR directly contain {type:"gradient", colors:[…]}
40
+ Returns **BGR** uint8 image (OpenCV-ready).
41
+ """
42
+ try:
43
+ # ── Resolve input ---------------------------------------------------
44
+ choice : str = "minimalist"
45
+ custom_path : str | None = None
46
+ direct_style : Dict[str, Any] | None = None
47
+
48
+ if isinstance(bg_config, str):
49
+ choice = bg_config.lower()
50
+
51
+ elif isinstance(bg_config, dict):
52
+ choice = bg_config.get("background_choice", bg_config.get("name", "minimalist")).lower()
53
+ custom_path = bg_config.get("custom_path")
54
+ if "type" in bg_config and "colors" in bg_config:
55
+ direct_style = bg_config # full inline style
56
+
57
+ # ── 1) Custom image? ----------------------------------------------
58
+ if custom_path and os.path.exists(custom_path):
59
+ img = cv2.imread(custom_path, cv2.IMREAD_COLOR)
60
+ if img is not None:
61
+ img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
62
+ fitted = _fit_image_letterbox(img_rgb, width, height, fill=(32,32,32))
63
+ return cv2.cvtColor(fitted, cv2.COLOR_RGB2BGR)
64
+ log.warning(f"Custom-background read failed: {custom_path}")
65
+
66
+ # ── 2) Inline dict style? -----------------------------------------
67
+ if direct_style:
68
+ if direct_style["type"] == "color":
69
+ bg = _create_solid_background(direct_style, width, height)
70
+ else: # gradient / image
71
+ bg = _create_gradient_background(direct_style, width, height)
72
+ return _apply_bg_adjustments(bg, direct_style)
73
+
74
+ # ── 3) Preset dict lookup -----------------------------------------
75
+ preset = PROFESSIONAL_BACKGROUNDS.get(choice, PROFESSIONAL_BACKGROUNDS["minimalist"])
76
+
77
+ if preset["type"] == "color":
78
+ bg = _create_solid_background(preset, width, height)
79
+ elif preset["type"] == "image":
80
+ path = Path(preset["path"])
81
+ if path.exists():
82
+ img_bgr = cv2.imread(str(path), cv2.IMREAD_COLOR)
83
+ if img_bgr is not None:
84
+ return cv2.resize(img_bgr, (width, height), interpolation=cv2.INTER_LANCZOS4)
85
+ log.warning(f"Preset image not found: {path}; falling back to gradient")
86
+ bg = _create_gradient_background(
87
+ {**preset, "type": "gradient", "colors": ["#3a3a3a", "#2e2e2e"]}, width, height
88
+ )
89
+ else: # gradient
90
+ bg = _create_gradient_background(preset, width, height)
91
+
92
+ return _apply_bg_adjustments(bg, preset)
93
+
94
+ except Exception as e:
95
+ log.error(f"create_professional_background: {e}")
96
+ return np.full((height, width, 3), (128,128,128), np.uint8)
97
+
98
+
99
+ # ────────────────────────────────────────────────────────────────────────────
100
+ # Letter-boxed fit for custom images
101
+ # ─────────────────────────────────────────────────────────────────────��──────
102
+ def _fit_image_letterbox(img_rgb: np.ndarray, dst_w: int, dst_h: int,
103
+ fill=(32,32,32)) -> np.ndarray:
104
+ h, w = img_rgb.shape[:2]
105
+ if h == 0 or w == 0:
106
+ return np.full((dst_h, dst_w, 3), fill, np.uint8)
107
+
108
+ src_a = w / h
109
+ dst_a = dst_w / dst_h
110
+ if src_a > dst_a:
111
+ new_w, new_h = dst_w, int(dst_w / src_a)
112
+ else:
113
+ new_h, new_w = dst_h, int(dst_h * src_a)
114
+
115
+ resized = cv2.resize(img_rgb, (new_w, new_h), interpolation=cv2.INTER_AREA)
116
+ canvas = np.full((dst_h, dst_w, 3), fill, np.uint8)
117
+ y0 = (dst_h-new_h)//2; x0 = (dst_w-new_w)//2
118
+ canvas[y0:y0+new_h, x0:x0+new_w] = resized
119
+ return canvas
120
+
121
+
122
+ # ────────────────────────────────────────────────────────────────────────────
123
+ # Background builders
124
+ # ────────────────────────────────────────────────────────────────────────────
125
+ def _create_solid_background(style: Dict[str,Any], w: int, h: int) -> np.ndarray:
126
+ clr_hex = style["colors"][0].lstrip("#")
127
+ rgb = tuple(int(clr_hex[i:i+2],16) for i in (0,2,4))
128
+ return np.full((h,w,3), rgb[::-1], np.uint8) # BGR
129
+
130
+ def _create_gradient_background(style: Dict[str,Any], w:int, h:int) -> np.ndarray:
131
+ cols = [hex.lstrip("#") for hex in style["colors"]]
132
+ rgbs = [tuple(int(c[i:i+2],16) for i in (0,2,4)) for c in cols]
133
+ dirn = style.get("direction","vertical")
134
+
135
+ if dirn=="vertical": grad = _grad_vertical(rgbs, w, h)
136
+ elif dirn=="horizontal": grad = _grad_horizontal(rgbs, w, h)
137
+ elif dirn=="diagonal": grad = _grad_diagonal(rgbs, w, h)
138
+ else: grad = _grad_radial(rgbs, w, h,
139
+ soft=(dirn=="soft_radial"))
140
+ return cv2.cvtColor(grad, cv2.COLOR_RGB2BGR)
141
+
142
+ # --- gradient helpers -------------------------------------------------------
143
+
144
+ def _grad_vertical(colors, w, h):
145
+ g = np.zeros((h, w, 3), np.uint8)
146
+ for y in range(h):
147
+ g[y, :] = _interp_multi(colors, y/h)
148
+ return g
149
+ def _grad_horizontal(colors, w, h):
150
+ g = np.zeros((h, w, 3), np.uint8)
151
+ for x in range(w):
152
+ g[:, x] = _interp_multi(colors, x/w)
153
+ return g
154
+ def _grad_diagonal(colors, w, h):
155
+ y,x = np.mgrid[0:h, 0:w]
156
+ prog = np.clip((x+y)/(h+w), 0, 1)
157
+ g = np.zeros((h,w,3), np.uint8)
158
+ for c in range(3):
159
+ g[:,:,c] = _vector_interp(colors, prog, c)
160
+ return g
161
+ def _grad_radial(colors, w, h, soft=False):
162
+ cx, cy = w/2, h/2
163
+ maxd = np.hypot(cx, cy)
164
+ y,x = np.mgrid[0:h, 0:w]
165
+ prog = np.clip(np.hypot(x-cx, y-cy)/maxd, 0, 1)
166
+ if soft: prog = prog**0.7
167
+ g = np.zeros((h,w,3), np.uint8)
168
+ for c in range(3):
169
+ g[:,:,c] = _vector_interp(colors, prog, c)
170
+ return g
171
+
172
+ def _vector_interp(cols, prog, chan):
173
+ if len(cols)==1:
174
+ return np.full_like(prog, cols[0][chan], np.uint8)
175
+ segs = len(cols)-1
176
+ seg_prog = prog*segs
177
+ idx = np.clip(np.floor(seg_prog).astype(int), 0, segs-1)
178
+ local = seg_prog - idx
179
+ start = np.take([c[chan] for c in cols], idx)
180
+ end = np.take([c[chan] for c in cols[1:]+[cols[-1]]], idx)
181
+ return (start + (end-start)*local).astype(np.uint8)
182
+
183
+ def _interp_multi(cols, p):
184
+ # cols length 1..n p ∈[0,1]
185
+ if len(cols)==1: return cols[0]
186
+ seg = p*(len(cols)-1)
187
+ i = int(seg)
188
+ l = seg - i
189
+ c1, c2 = cols[i], cols[min(i+1, len(cols)-1)]
190
+ return tuple(int(c1[c]+(c2[c]-c1[c])*l) for c in range(3))
191
+
192
+ # ────────────────────────────────────────────────────────────────────────────
193
+ # Post-adjust
194
+ # ────────────────────────────────────────────────────────────────────────────
195
+ def _apply_bg_adjustments(bg: np.ndarray, cfg: Dict[str,Any]) -> np.ndarray:
196
+ bright = cfg.get("brightness",1.0)
197
+ contrast = cfg.get("contrast",1.0)
198
+ if bright==1.0 and contrast==1.0:
199
+ return bg
200
+ out = bg.astype(np.float32)*contrast*bright
201
+ return np.clip(out,0,255).astype(np.uint8)