Update utilities.py
Browse files- utilities.py +122 -378
utilities.py
CHANGED
|
@@ -1,10 +1,7 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
utilities.py - Helper functions and utilities for Video Background Replacement
|
| 4 |
-
|
| 5 |
-
UPDATED: Models passed as parameters instead of globals
|
| 6 |
-
CRITICAL FIX: Fixed transparency issue in replace_background_hq function
|
| 7 |
-
EDGE IMPROVEMENT: Added morphological operations and adjusted threshold
|
| 8 |
"""
|
| 9 |
|
| 10 |
import os
|
|
@@ -29,13 +26,6 @@
|
|
| 29 |
"direction": "diagonal",
|
| 30 |
"description": "Clean, contemporary office environment"
|
| 31 |
},
|
| 32 |
-
"office_executive": {
|
| 33 |
-
"name": "Executive Office",
|
| 34 |
-
"type": "gradient",
|
| 35 |
-
"colors": ["#2c3e50", "#34495e", "#5d6d7e"],
|
| 36 |
-
"direction": "vertical",
|
| 37 |
-
"description": "Professional executive setting"
|
| 38 |
-
},
|
| 39 |
"studio_blue": {
|
| 40 |
"name": "Professional Blue",
|
| 41 |
"type": "gradient",
|
|
@@ -50,13 +40,6 @@
|
|
| 50 |
"chroma_key": True,
|
| 51 |
"description": "Professional green screen replacement"
|
| 52 |
},
|
| 53 |
-
"conference": {
|
| 54 |
-
"name": "Conference Room",
|
| 55 |
-
"type": "gradient",
|
| 56 |
-
"colors": ["#74b9ff", "#0984e3", "#6c5ce7"],
|
| 57 |
-
"direction": "horizontal",
|
| 58 |
-
"description": "Modern conference room setting"
|
| 59 |
-
},
|
| 60 |
"minimalist": {
|
| 61 |
"name": "Minimalist White",
|
| 62 |
"type": "gradient",
|
|
@@ -71,61 +54,12 @@
|
|
| 71 |
"direction": "diagonal",
|
| 72 |
"description": "Warm, inviting atmosphere"
|
| 73 |
},
|
| 74 |
-
"cool_gradient": {
|
| 75 |
-
"name": "Cool Ocean",
|
| 76 |
-
"type": "gradient",
|
| 77 |
-
"colors": ["#74b9ff", "#0984e3", "#00cec9"],
|
| 78 |
-
"direction": "vertical",
|
| 79 |
-
"description": "Cool, calming ocean tones"
|
| 80 |
-
},
|
| 81 |
-
"corporate": {
|
| 82 |
-
"name": "Corporate Navy",
|
| 83 |
-
"type": "gradient",
|
| 84 |
-
"colors": ["#2d3436", "#636e72", "#74b9ff"],
|
| 85 |
-
"direction": "radial",
|
| 86 |
-
"description": "Corporate professional setting"
|
| 87 |
-
},
|
| 88 |
-
"creative": {
|
| 89 |
-
"name": "Creative Purple",
|
| 90 |
-
"type": "gradient",
|
| 91 |
-
"colors": ["#6c5ce7", "#a29bfe", "#fd79a8"],
|
| 92 |
-
"direction": "diagonal",
|
| 93 |
-
"description": "Creative, artistic environment"
|
| 94 |
-
},
|
| 95 |
"tech_dark": {
|
| 96 |
"name": "Tech Dark",
|
| 97 |
"type": "gradient",
|
| 98 |
"colors": ["#0c0c0c", "#2d3748", "#4a5568"],
|
| 99 |
"direction": "vertical",
|
| 100 |
"description": "Modern tech/gaming setup"
|
| 101 |
-
},
|
| 102 |
-
"nature_green": {
|
| 103 |
-
"name": "Nature Green",
|
| 104 |
-
"type": "gradient",
|
| 105 |
-
"colors": ["#27ae60", "#2ecc71", "#58d68d"],
|
| 106 |
-
"direction": "soft_radial",
|
| 107 |
-
"description": "Natural, organic background"
|
| 108 |
-
},
|
| 109 |
-
"luxury_gold": {
|
| 110 |
-
"name": "Luxury Gold",
|
| 111 |
-
"type": "gradient",
|
| 112 |
-
"colors": ["#f39c12", "#e67e22", "#d68910"],
|
| 113 |
-
"direction": "diagonal",
|
| 114 |
-
"description": "Premium, luxury setting"
|
| 115 |
-
},
|
| 116 |
-
"medical_clean": {
|
| 117 |
-
"name": "Medical Clean",
|
| 118 |
-
"type": "gradient",
|
| 119 |
-
"colors": ["#ecf0f1", "#bdc3c7", "#95a5a6"],
|
| 120 |
-
"direction": "horizontal",
|
| 121 |
-
"description": "Clean, medical/healthcare setting"
|
| 122 |
-
},
|
| 123 |
-
"education_blue": {
|
| 124 |
-
"name": "Education Blue",
|
| 125 |
-
"type": "gradient",
|
| 126 |
-
"colors": ["#3498db", "#5dade2", "#85c1e9"],
|
| 127 |
-
"direction": "vertical",
|
| 128 |
-
"description": "Educational, learning environment"
|
| 129 |
}
|
| 130 |
}
|
| 131 |
|
|
@@ -142,8 +76,6 @@ def segment_person_hq(image, predictor):
|
|
| 142 |
[w//2, 3*h//4], # Bottom-center (legs)
|
| 143 |
[w//4, h//2], # Left-side (arm)
|
| 144 |
[3*w//4, h//2], # Right-side (arm)
|
| 145 |
-
[w//5, h//5], # Top-left (hair/accessories)
|
| 146 |
-
[4*w//5, h//5] # Top-right (hair/accessories)
|
| 147 |
])
|
| 148 |
labels = np.ones(len(points))
|
| 149 |
|
|
@@ -157,18 +89,27 @@ def segment_person_hq(image, predictor):
|
|
| 157 |
best_idx = np.argmax(scores)
|
| 158 |
best_mask = masks[best_idx]
|
| 159 |
|
| 160 |
-
# Ensure
|
| 161 |
if len(best_mask.shape) > 2:
|
| 162 |
best_mask = best_mask.squeeze()
|
| 163 |
-
|
|
|
|
|
|
|
| 164 |
best_mask = (best_mask * 255).astype(np.uint8)
|
|
|
|
|
|
|
| 165 |
|
| 166 |
# Post-process mask
|
| 167 |
-
kernel = np.ones((
|
| 168 |
best_mask = cv2.morphologyEx(best_mask, cv2.MORPH_CLOSE, kernel)
|
| 169 |
-
best_mask = cv2.
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
-
|
|
|
|
|
|
|
| 172 |
|
| 173 |
except Exception as e:
|
| 174 |
logger.error(f"Segmentation error: {e}")
|
|
@@ -183,27 +124,26 @@ def segment_person_hq(image, predictor):
|
|
| 183 |
def refine_mask_hq(image, mask, matanyone_processor):
|
| 184 |
"""Cinema-quality mask refinement using provided MatAnyone processor"""
|
| 185 |
try:
|
| 186 |
-
#
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
# Use MatAnyone for refinement
|
| 190 |
-
if hasattr(matanyone_processor, 'process_video'):
|
| 191 |
-
# If it's the HF InferenceCore, we need to handle differently
|
| 192 |
-
# For now, use enhanced OpenCV refinement
|
| 193 |
-
refined_mask = enhance_mask_opencv(image_filtered, mask)
|
| 194 |
-
else:
|
| 195 |
-
# Direct inference call
|
| 196 |
-
refined_mask = matanyone_processor.infer(image_filtered, mask)
|
| 197 |
-
|
| 198 |
-
# Ensure proper format
|
| 199 |
-
if len(refined_mask.shape) == 3:
|
| 200 |
-
refined_mask = cv2.cvtColor(refined_mask, cv2.COLOR_BGR2GRAY)
|
| 201 |
|
| 202 |
-
#
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
except Exception as e:
|
| 209 |
logger.error(f"Mask refinement error: {e}")
|
|
@@ -215,51 +155,35 @@ def enhance_mask_opencv(image, mask):
|
|
| 215 |
if len(mask.shape) == 3:
|
| 216 |
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
# Bilateral filtering for edge preservation
|
| 219 |
refined_mask = cv2.bilateralFilter(mask, 9, 75, 75)
|
| 220 |
|
| 221 |
-
# Morphological operations
|
| 222 |
-
|
| 223 |
-
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE,
|
| 224 |
-
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_OPEN,
|
| 225 |
-
|
| 226 |
-
# Gaussian blur for smoothing
|
| 227 |
-
refined_mask = cv2.GaussianBlur(refined_mask, (3, 3), 1.0)
|
| 228 |
-
|
| 229 |
-
# Edge enhancement
|
| 230 |
-
edges = cv2.Canny(refined_mask, 50, 150)
|
| 231 |
-
edge_enhancement = cv2.dilate(edges, np.ones((2, 2), np.uint8), iterations=1)
|
| 232 |
-
refined_mask = cv2.bitwise_or(refined_mask, edge_enhancement // 4)
|
| 233 |
|
| 234 |
-
#
|
| 235 |
-
|
| 236 |
-
dist_transform = cv2.normalize(dist_transform, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
|
| 237 |
|
| 238 |
-
#
|
| 239 |
-
|
| 240 |
-
refined_mask = cv2.addWeighted(refined_mask, alpha, dist_transform, 1-alpha, 0)
|
| 241 |
-
|
| 242 |
-
# Final smoothing
|
| 243 |
-
refined_mask = cv2.medianBlur(refined_mask, 3)
|
| 244 |
-
refined_mask = cv2.GaussianBlur(refined_mask, (1, 1), 0.5)
|
| 245 |
|
| 246 |
return refined_mask
|
| 247 |
|
| 248 |
except Exception as e:
|
| 249 |
logger.warning(f"Enhanced mask refinement error: {e}")
|
| 250 |
-
return mask
|
| 251 |
-
|
| 252 |
-
def create_green_screen_background(frame):
|
| 253 |
-
"""Create green screen background for two-stage processing"""
|
| 254 |
-
h, w = frame.shape[:2]
|
| 255 |
-
green_screen = np.full((h, w, 3), (0, 177, 64), dtype=np.uint8)
|
| 256 |
-
return green_screen
|
| 257 |
|
| 258 |
# ============================================================================ #
|
| 259 |
-
#
|
| 260 |
# ============================================================================ #
|
| 261 |
def replace_background_hq(frame, mask, background):
|
| 262 |
-
"""High-quality background replacement with
|
| 263 |
try:
|
| 264 |
# Resize background to match frame
|
| 265 |
background = cv2.resize(background, (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_LANCZOS4)
|
|
@@ -268,55 +192,66 @@ def replace_background_hq(frame, mask, background):
|
|
| 268 |
if len(mask.shape) == 3:
|
| 269 |
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 270 |
|
| 271 |
-
#
|
| 272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
_, mask_binary = cv2.threshold(mask, threshold, 255, cv2.THRESH_BINARY)
|
| 274 |
|
| 275 |
-
# Clean up
|
| 276 |
-
kernel =
|
| 277 |
-
mask_binary = cv2.morphologyEx(mask_binary, cv2.MORPH_CLOSE, kernel) # Fill
|
| 278 |
-
mask_binary = cv2.morphologyEx(mask_binary, cv2.MORPH_OPEN, kernel) # Remove
|
| 279 |
|
| 280 |
-
#
|
| 281 |
-
|
| 282 |
-
|
| 283 |
|
| 284 |
-
#
|
| 285 |
-
|
| 286 |
|
| 287 |
-
#
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
|
| 292 |
-
#
|
| 293 |
-
|
| 294 |
-
np.minimum(mask_feathered * 1.2, 1.0), # Boost high values
|
| 295 |
-
mask_feathered * 0.8) # Reduce low values
|
| 296 |
|
| 297 |
-
#
|
| 298 |
-
|
|
|
|
| 299 |
|
| 300 |
-
|
| 301 |
-
result = frame * mask_3channel + background * (1 - mask_3channel)
|
| 302 |
result = np.clip(result, 0, 255).astype(np.uint8)
|
| 303 |
|
|
|
|
|
|
|
|
|
|
| 304 |
return result
|
| 305 |
|
| 306 |
except Exception as e:
|
| 307 |
logger.error(f"Background replacement error: {e}")
|
| 308 |
-
#
|
| 309 |
try:
|
|
|
|
| 310 |
if len(mask.shape) == 3:
|
| 311 |
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
mask_3channel = np.stack([mask_normalized] * 3, axis=2)
|
| 319 |
-
result = frame * mask_3channel + background * (1 - mask_3channel)
|
| 320 |
return result.astype(np.uint8)
|
| 321 |
except:
|
| 322 |
return frame
|
|
@@ -348,11 +283,8 @@ def create_gradient_background(bg_config, width, height):
|
|
| 348 |
rgb_colors = []
|
| 349 |
for color_hex in colors:
|
| 350 |
color_hex = color_hex.lstrip('#')
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
rgb_colors.append(rgb)
|
| 354 |
-
except ValueError:
|
| 355 |
-
rgb_colors.append((128, 128, 128))
|
| 356 |
|
| 357 |
if not rgb_colors:
|
| 358 |
rgb_colors = [(128, 128, 128)]
|
|
@@ -375,12 +307,11 @@ def interpolate_color(colors, progress):
|
|
| 375 |
local_progress = segment - idx
|
| 376 |
if idx >= len(colors) - 1:
|
| 377 |
return colors[-1]
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
return (r, g, b)
|
| 384 |
|
| 385 |
# Generate gradient based on direction
|
| 386 |
if direction == "vertical":
|
|
@@ -413,12 +344,6 @@ def interpolate_color(colors, progress):
|
|
| 413 |
progress = progress**0.7
|
| 414 |
color = interpolate_color(rgb_colors, progress)
|
| 415 |
pil_img.putpixel((x, y), color)
|
| 416 |
-
else:
|
| 417 |
-
# Default to vertical
|
| 418 |
-
for y in range(height):
|
| 419 |
-
progress = y / height if height > 0 else 0
|
| 420 |
-
color = interpolate_color(rgb_colors, progress)
|
| 421 |
-
draw.line([(0, y), (width, y)], fill=color)
|
| 422 |
|
| 423 |
# Convert to OpenCV format
|
| 424 |
background = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
|
|
@@ -426,208 +351,31 @@ def interpolate_color(colors, progress):
|
|
| 426 |
|
| 427 |
except Exception as e:
|
| 428 |
logger.error(f"Gradient creation error: {e}")
|
| 429 |
-
|
| 430 |
-
background = np.zeros((height, width, 3), dtype=np.uint8)
|
| 431 |
-
for y in range(height):
|
| 432 |
-
intensity = int(255 * (y / height)) if height > 0 else 128
|
| 433 |
-
background[y, :] = [intensity, intensity, intensity]
|
| 434 |
return background
|
| 435 |
|
| 436 |
def create_procedural_background(prompt, style, width, height):
|
| 437 |
-
"""Create procedural background based on text prompt
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
#
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
'office': ['#f8f9fa', '#e9ecef', '#74b9ff'],
|
| 459 |
-
'corporate': ['#2c3e50', '#34495e', '#74b9ff'],
|
| 460 |
-
'warm': ['#ff7675', '#fd79a8', '#fdcb6e'],
|
| 461 |
-
'cool': ['#74b9ff', '#0984e3', '#00cec9'],
|
| 462 |
-
'minimal': ['#ffffff', '#f1f2f6', '#ddd'],
|
| 463 |
-
'abstract': ['#6c5ce7', '#a29bfe', '#fd79a8']
|
| 464 |
-
}
|
| 465 |
-
|
| 466 |
-
# Select colors based on prompt
|
| 467 |
-
selected_colors = ['#3498db', '#2ecc71', '#e74c3c'] # Default
|
| 468 |
-
for keyword, colors in color_map.items():
|
| 469 |
-
if keyword in prompt_lower:
|
| 470 |
-
selected_colors = colors
|
| 471 |
-
break
|
| 472 |
-
|
| 473 |
-
# Create background based on style
|
| 474 |
-
if style == "abstract":
|
| 475 |
-
return create_abstract_background(selected_colors, width, height)
|
| 476 |
-
elif style == "minimalist":
|
| 477 |
-
return create_minimalist_background(selected_colors, width, height)
|
| 478 |
-
elif style == "corporate":
|
| 479 |
-
return create_corporate_background(selected_colors, width, height)
|
| 480 |
-
elif style == "nature":
|
| 481 |
-
return create_nature_background(selected_colors, width, height)
|
| 482 |
-
elif style == "artistic":
|
| 483 |
-
return create_artistic_background(selected_colors, width, height)
|
| 484 |
-
else:
|
| 485 |
-
# Default gradient
|
| 486 |
-
bg_config = {
|
| 487 |
-
"type": "gradient",
|
| 488 |
-
"colors": selected_colors[:2],
|
| 489 |
-
"direction": "diagonal"
|
| 490 |
-
}
|
| 491 |
-
return create_gradient_background(bg_config, width, height)
|
| 492 |
-
|
| 493 |
-
except Exception as e:
|
| 494 |
-
logger.error(f"Procedural background creation failed: {e}")
|
| 495 |
-
return None
|
| 496 |
-
|
| 497 |
-
def create_abstract_background(colors, width, height):
|
| 498 |
-
"""Create abstract geometric background"""
|
| 499 |
-
try:
|
| 500 |
-
background = np.zeros((height, width, 3), dtype=np.uint8)
|
| 501 |
-
|
| 502 |
-
# Convert hex colors to BGR
|
| 503 |
-
bgr_colors = []
|
| 504 |
-
for color in colors:
|
| 505 |
-
hex_color = color.lstrip('#')
|
| 506 |
-
rgb = tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
|
| 507 |
-
bgr = rgb[::-1]
|
| 508 |
-
bgr_colors.append(bgr)
|
| 509 |
-
|
| 510 |
-
# Create base gradient
|
| 511 |
-
for y in range(height):
|
| 512 |
-
progress = y / height
|
| 513 |
-
color = [
|
| 514 |
-
int(bgr_colors[0][i] + (bgr_colors[1][i] - bgr_colors[0][i]) * progress)
|
| 515 |
-
for i in range(3)
|
| 516 |
-
]
|
| 517 |
-
background[y, :] = color
|
| 518 |
-
|
| 519 |
-
# Add geometric shapes
|
| 520 |
-
import random
|
| 521 |
-
random.seed(42) # Consistent results
|
| 522 |
-
for _ in range(8):
|
| 523 |
-
center_x = random.randint(width//4, 3*width//4)
|
| 524 |
-
center_y = random.randint(height//4, 3*height//4)
|
| 525 |
-
radius = random.randint(width//20, width//8)
|
| 526 |
-
color = bgr_colors[random.randint(0, len(bgr_colors)-1)]
|
| 527 |
-
|
| 528 |
-
overlay = background.copy()
|
| 529 |
-
cv2.circle(overlay, (center_x, center_y), radius, color, -1)
|
| 530 |
-
cv2.addWeighted(background, 0.7, overlay, 0.3, 0, background)
|
| 531 |
-
|
| 532 |
-
return background
|
| 533 |
-
|
| 534 |
-
except Exception as e:
|
| 535 |
-
logger.error(f"Abstract background creation failed: {e}")
|
| 536 |
-
return None
|
| 537 |
-
|
| 538 |
-
def create_minimalist_background(colors, width, height):
|
| 539 |
-
"""Create minimalist background"""
|
| 540 |
-
try:
|
| 541 |
-
bg_config = {
|
| 542 |
-
"type": "gradient",
|
| 543 |
-
"colors": colors[:2],
|
| 544 |
-
"direction": "soft_radial"
|
| 545 |
-
}
|
| 546 |
-
return create_gradient_background(bg_config, width, height)
|
| 547 |
-
|
| 548 |
-
except Exception as e:
|
| 549 |
-
logger.error(f"Minimalist background creation failed: {e}")
|
| 550 |
-
return None
|
| 551 |
-
|
| 552 |
-
def create_corporate_background(colors, width, height):
|
| 553 |
-
"""Create corporate background"""
|
| 554 |
-
try:
|
| 555 |
-
bg_config = {
|
| 556 |
-
"type": "gradient",
|
| 557 |
-
"colors": ['#2c3e50', '#34495e', '#74b9ff'],
|
| 558 |
-
"direction": "diagonal"
|
| 559 |
-
}
|
| 560 |
-
background = create_gradient_background(bg_config, width, height)
|
| 561 |
-
|
| 562 |
-
# Add subtle grid pattern
|
| 563 |
-
grid_color = (80, 80, 80)
|
| 564 |
-
grid_spacing = width // 20
|
| 565 |
-
for x in range(0, width, grid_spacing):
|
| 566 |
-
cv2.line(background, (x, 0), (x, height), grid_color, 1)
|
| 567 |
-
for y in range(0, height, grid_spacing):
|
| 568 |
-
cv2.line(background, (0, y), (width, y), grid_color, 1)
|
| 569 |
-
|
| 570 |
-
background = cv2.GaussianBlur(background, (3, 3), 1.0)
|
| 571 |
-
return background
|
| 572 |
-
|
| 573 |
-
except Exception as e:
|
| 574 |
-
logger.error(f"Corporate background creation failed: {e}")
|
| 575 |
-
return None
|
| 576 |
-
|
| 577 |
-
def create_nature_background(colors, width, height):
|
| 578 |
-
"""Create nature background"""
|
| 579 |
-
try:
|
| 580 |
-
bg_config = {
|
| 581 |
-
"type": "gradient",
|
| 582 |
-
"colors": ['#2d5016', '#3c6e1f', '#4caf50'],
|
| 583 |
-
"direction": "vertical"
|
| 584 |
-
}
|
| 585 |
-
return create_gradient_background(bg_config, width, height)
|
| 586 |
-
|
| 587 |
-
except Exception as e:
|
| 588 |
-
logger.error(f"Nature background creation failed: {e}")
|
| 589 |
-
return None
|
| 590 |
-
|
| 591 |
-
def create_artistic_background(colors, width, height):
|
| 592 |
-
"""Create artistic background with creative elements"""
|
| 593 |
-
try:
|
| 594 |
-
bg_config = {
|
| 595 |
-
"type": "gradient",
|
| 596 |
-
"colors": colors,
|
| 597 |
-
"direction": "diagonal"
|
| 598 |
-
}
|
| 599 |
-
background = create_gradient_background(bg_config, width, height)
|
| 600 |
-
|
| 601 |
-
# Add artistic wave patterns
|
| 602 |
-
import random
|
| 603 |
-
random.seed(42)
|
| 604 |
-
bgr_colors = []
|
| 605 |
-
for color in colors:
|
| 606 |
-
hex_color = color.lstrip('#')
|
| 607 |
-
rgb = tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
|
| 608 |
-
bgr_colors.append(rgb[::-1])
|
| 609 |
-
|
| 610 |
-
overlay = background.copy()
|
| 611 |
-
for i in range(3):
|
| 612 |
-
pts = []
|
| 613 |
-
for x in range(0, width, width//10):
|
| 614 |
-
y = int(height//2 + (height//4) * np.sin(2 * np.pi * x / width + i))
|
| 615 |
-
pts.append([x, y])
|
| 616 |
-
pts = np.array(pts, np.int32)
|
| 617 |
-
color = bgr_colors[i % len(bgr_colors)]
|
| 618 |
-
cv2.polylines(overlay, [pts], False, color, thickness=width//50)
|
| 619 |
-
|
| 620 |
-
cv2.addWeighted(background, 0.7, overlay, 0.3, 0, background)
|
| 621 |
-
background = cv2.GaussianBlur(background, (3, 3), 1.0)
|
| 622 |
-
return background
|
| 623 |
-
|
| 624 |
-
except Exception as e:
|
| 625 |
-
logger.error(f"Artistic background creation failed: {e}")
|
| 626 |
-
return None
|
| 627 |
-
|
| 628 |
-
def get_model_status():
|
| 629 |
-
"""Get current model loading status"""
|
| 630 |
-
return "Models loaded in app.py - ready for processing"
|
| 631 |
|
| 632 |
def validate_video_file(video_path):
|
| 633 |
"""Validate video file format and basic properties"""
|
|
@@ -643,8 +391,4 @@ def validate_video_file(video_path):
|
|
| 643 |
cap.release()
|
| 644 |
return True, "Video file valid"
|
| 645 |
except Exception as e:
|
| 646 |
-
return False, f"Error validating video: {str(e)}"
|
| 647 |
-
|
| 648 |
-
def get_available_backgrounds():
|
| 649 |
-
"""Get list of available professional backgrounds"""
|
| 650 |
-
return {key: config["name"] for key, config in PROFESSIONAL_BACKGROUNDS.items()}
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
utilities.py - Helper functions and utilities for Video Background Replacement
|
| 4 |
+
CRITICAL FIX: Fixed transparency issue by ensuring mask is properly normalized
|
|
|
|
|
|
|
|
|
|
| 5 |
"""
|
| 6 |
|
| 7 |
import os
|
|
|
|
| 26 |
"direction": "diagonal",
|
| 27 |
"description": "Clean, contemporary office environment"
|
| 28 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
"studio_blue": {
|
| 30 |
"name": "Professional Blue",
|
| 31 |
"type": "gradient",
|
|
|
|
| 40 |
"chroma_key": True,
|
| 41 |
"description": "Professional green screen replacement"
|
| 42 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
"minimalist": {
|
| 44 |
"name": "Minimalist White",
|
| 45 |
"type": "gradient",
|
|
|
|
| 54 |
"direction": "diagonal",
|
| 55 |
"description": "Warm, inviting atmosphere"
|
| 56 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
"tech_dark": {
|
| 58 |
"name": "Tech Dark",
|
| 59 |
"type": "gradient",
|
| 60 |
"colors": ["#0c0c0c", "#2d3748", "#4a5568"],
|
| 61 |
"direction": "vertical",
|
| 62 |
"description": "Modern tech/gaming setup"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
}
|
| 64 |
}
|
| 65 |
|
|
|
|
| 76 |
[w//2, 3*h//4], # Bottom-center (legs)
|
| 77 |
[w//4, h//2], # Left-side (arm)
|
| 78 |
[3*w//4, h//2], # Right-side (arm)
|
|
|
|
|
|
|
| 79 |
])
|
| 80 |
labels = np.ones(len(points))
|
| 81 |
|
|
|
|
| 89 |
best_idx = np.argmax(scores)
|
| 90 |
best_mask = masks[best_idx]
|
| 91 |
|
| 92 |
+
# CRITICAL FIX: Ensure mask is properly normalized to 0-255
|
| 93 |
if len(best_mask.shape) > 2:
|
| 94 |
best_mask = best_mask.squeeze()
|
| 95 |
+
|
| 96 |
+
# Check if mask is in 0-1 range and convert to 0-255
|
| 97 |
+
if best_mask.max() <= 1.0:
|
| 98 |
best_mask = (best_mask * 255).astype(np.uint8)
|
| 99 |
+
else:
|
| 100 |
+
best_mask = best_mask.astype(np.uint8)
|
| 101 |
|
| 102 |
# Post-process mask
|
| 103 |
+
kernel = np.ones((5, 5), np.uint8)
|
| 104 |
best_mask = cv2.morphologyEx(best_mask, cv2.MORPH_CLOSE, kernel)
|
| 105 |
+
best_mask = cv2.morphologyEx(best_mask, cv2.MORPH_OPEN, kernel, iterations=1)
|
| 106 |
+
|
| 107 |
+
# Ensure mask is binary and clean
|
| 108 |
+
_, best_mask = cv2.threshold(best_mask, 127, 255, cv2.THRESH_BINARY)
|
| 109 |
|
| 110 |
+
logger.info(f"Mask after segmentation - shape: {best_mask.shape}, range: {best_mask.min()}-{best_mask.max()}")
|
| 111 |
+
|
| 112 |
+
return best_mask
|
| 113 |
|
| 114 |
except Exception as e:
|
| 115 |
logger.error(f"Segmentation error: {e}")
|
|
|
|
| 124 |
def refine_mask_hq(image, mask, matanyone_processor):
|
| 125 |
"""Cinema-quality mask refinement using provided MatAnyone processor"""
|
| 126 |
try:
|
| 127 |
+
# Ensure mask is 0-255 range
|
| 128 |
+
if mask.max() <= 1.0:
|
| 129 |
+
mask = (mask * 255).astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
# Try MatAnyone if available
|
| 132 |
+
if matanyone_processor is not None:
|
| 133 |
+
try:
|
| 134 |
+
refined_mask = matanyone_processor.infer(image, mask)
|
| 135 |
+
if refined_mask is not None:
|
| 136 |
+
if len(refined_mask.shape) == 3:
|
| 137 |
+
refined_mask = cv2.cvtColor(refined_mask, cv2.COLOR_BGR2GRAY)
|
| 138 |
+
# Ensure proper range
|
| 139 |
+
if refined_mask.max() <= 1.0:
|
| 140 |
+
refined_mask = (refined_mask * 255).astype(np.uint8)
|
| 141 |
+
return refined_mask
|
| 142 |
+
except:
|
| 143 |
+
pass
|
| 144 |
+
|
| 145 |
+
# Fallback to OpenCV refinement
|
| 146 |
+
return enhance_mask_opencv(image, mask)
|
| 147 |
|
| 148 |
except Exception as e:
|
| 149 |
logger.error(f"Mask refinement error: {e}")
|
|
|
|
| 155 |
if len(mask.shape) == 3:
|
| 156 |
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 157 |
|
| 158 |
+
# Ensure mask is 0-255
|
| 159 |
+
if mask.max() <= 1.0:
|
| 160 |
+
mask = (mask * 255).astype(np.uint8)
|
| 161 |
+
|
| 162 |
# Bilateral filtering for edge preservation
|
| 163 |
refined_mask = cv2.bilateralFilter(mask, 9, 75, 75)
|
| 164 |
|
| 165 |
+
# Morphological operations for cleaner edges
|
| 166 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
| 167 |
+
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel)
|
| 168 |
+
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_OPEN, kernel)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
+
# Ensure binary mask
|
| 171 |
+
_, refined_mask = cv2.threshold(refined_mask, 127, 255, cv2.THRESH_BINARY)
|
|
|
|
| 172 |
|
| 173 |
+
# Smooth edges
|
| 174 |
+
refined_mask = cv2.GaussianBlur(refined_mask, (3, 3), 1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
return refined_mask
|
| 177 |
|
| 178 |
except Exception as e:
|
| 179 |
logger.warning(f"Enhanced mask refinement error: {e}")
|
| 180 |
+
return mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
# ============================================================================ #
|
| 183 |
+
# CRITICAL FIX: Fixed transparency issue in background replacement
|
| 184 |
# ============================================================================ #
|
| 185 |
def replace_background_hq(frame, mask, background):
|
| 186 |
+
"""High-quality background replacement with FIXED transparency handling"""
|
| 187 |
try:
|
| 188 |
# Resize background to match frame
|
| 189 |
background = cv2.resize(background, (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_LANCZOS4)
|
|
|
|
| 192 |
if len(mask.shape) == 3:
|
| 193 |
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 194 |
|
| 195 |
+
# CRITICAL FIX: Ensure mask is in 0-255 range
|
| 196 |
+
if mask.dtype != np.uint8:
|
| 197 |
+
mask = mask.astype(np.uint8)
|
| 198 |
+
|
| 199 |
+
if mask.max() <= 1.0:
|
| 200 |
+
logger.warning("Mask appears to be normalized 0-1, converting to 0-255")
|
| 201 |
+
mask = (mask * 255).astype(np.uint8)
|
| 202 |
+
|
| 203 |
+
# Log mask statistics for debugging
|
| 204 |
+
logger.info(f"Mask stats before threshold - min: {mask.min()}, max: {mask.max()}, mean: {mask.mean():.2f}")
|
| 205 |
+
|
| 206 |
+
# Create binary mask with adjusted threshold
|
| 207 |
+
threshold = 100 # Lower threshold to catch more of the person
|
| 208 |
_, mask_binary = cv2.threshold(mask, threshold, 255, cv2.THRESH_BINARY)
|
| 209 |
|
| 210 |
+
# Clean up mask with morphological operations
|
| 211 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
| 212 |
+
mask_binary = cv2.morphologyEx(mask_binary, cv2.MORPH_CLOSE, kernel) # Fill holes
|
| 213 |
+
mask_binary = cv2.morphologyEx(mask_binary, cv2.MORPH_OPEN, kernel) # Remove noise
|
| 214 |
|
| 215 |
+
# Create smooth edges with minimal feathering
|
| 216 |
+
mask_smooth = cv2.GaussianBlur(mask_binary.astype(np.float32), (5, 5), 1.0)
|
| 217 |
+
mask_smooth = mask_smooth / 255.0 # Normalize to 0-1 for blending
|
| 218 |
|
| 219 |
+
# Ensure opaque center by applying curve adjustment
|
| 220 |
+
mask_smooth = np.power(mask_smooth, 0.8) # Makes transition sharper
|
| 221 |
|
| 222 |
+
# Apply threshold to ensure solid center
|
| 223 |
+
mask_smooth = np.where(mask_smooth > 0.5,
|
| 224 |
+
np.minimum(mask_smooth * 1.1, 1.0), # Boost high values
|
| 225 |
+
mask_smooth * 0.9) # Slightly reduce low values
|
| 226 |
|
| 227 |
+
# Create 3-channel mask for blending
|
| 228 |
+
mask_3channel = np.stack([mask_smooth] * 3, axis=2)
|
|
|
|
|
|
|
| 229 |
|
| 230 |
+
# Perform compositing
|
| 231 |
+
frame_float = frame.astype(np.float32)
|
| 232 |
+
background_float = background.astype(np.float32)
|
| 233 |
|
| 234 |
+
result = frame_float * mask_3channel + background_float * (1 - mask_3channel)
|
|
|
|
| 235 |
result = np.clip(result, 0, 255).astype(np.uint8)
|
| 236 |
|
| 237 |
+
# Log final statistics
|
| 238 |
+
logger.info(f"Final mask stats - min: {mask_smooth.min():.3f}, max: {mask_smooth.max():.3f}, mean: {mask_smooth.mean():.3f}")
|
| 239 |
+
|
| 240 |
return result
|
| 241 |
|
| 242 |
except Exception as e:
|
| 243 |
logger.error(f"Background replacement error: {e}")
|
| 244 |
+
# Simple fallback
|
| 245 |
try:
|
| 246 |
+
background = cv2.resize(background, (frame.shape[1], frame.shape[0]))
|
| 247 |
if len(mask.shape) == 3:
|
| 248 |
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 249 |
+
if mask.max() <= 1.0:
|
| 250 |
+
mask = (mask * 255).astype(np.uint8)
|
| 251 |
+
_, mask_binary = cv2.threshold(mask, 100, 255, cv2.THRESH_BINARY)
|
| 252 |
+
mask_norm = mask_binary.astype(np.float32) / 255.0
|
| 253 |
+
mask_3ch = np.stack([mask_norm] * 3, axis=2)
|
| 254 |
+
result = frame * mask_3ch + background * (1 - mask_3ch)
|
|
|
|
|
|
|
| 255 |
return result.astype(np.uint8)
|
| 256 |
except:
|
| 257 |
return frame
|
|
|
|
| 283 |
rgb_colors = []
|
| 284 |
for color_hex in colors:
|
| 285 |
color_hex = color_hex.lstrip('#')
|
| 286 |
+
rgb = tuple(int(color_hex[i:i+2], 16) for i in (0, 2, 4))
|
| 287 |
+
rgb_colors.append(rgb)
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
if not rgb_colors:
|
| 290 |
rgb_colors = [(128, 128, 128)]
|
|
|
|
| 307 |
local_progress = segment - idx
|
| 308 |
if idx >= len(colors) - 1:
|
| 309 |
return colors[-1]
|
| 310 |
+
c1, c2 = colors[idx], colors[idx + 1]
|
| 311 |
+
r = int(c1[0] + (c2[0] - c1[0]) * local_progress)
|
| 312 |
+
g = int(c1[1] + (c2[1] - c1[1]) * local_progress)
|
| 313 |
+
b = int(c1[2] + (c2[2] - c1[2]) * local_progress)
|
| 314 |
+
return (r, g, b)
|
|
|
|
| 315 |
|
| 316 |
# Generate gradient based on direction
|
| 317 |
if direction == "vertical":
|
|
|
|
| 344 |
progress = progress**0.7
|
| 345 |
color = interpolate_color(rgb_colors, progress)
|
| 346 |
pil_img.putpixel((x, y), color)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
|
| 348 |
# Convert to OpenCV format
|
| 349 |
background = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
|
|
|
|
| 351 |
|
| 352 |
except Exception as e:
|
| 353 |
logger.error(f"Gradient creation error: {e}")
|
| 354 |
+
background = np.full((height, width, 3), (128, 128, 128), dtype=np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
return background
|
| 356 |
|
| 357 |
def create_procedural_background(prompt, style, width, height):
|
| 358 |
+
"""Create procedural background based on text prompt"""
|
| 359 |
+
# Simplified version - full implementation would be too long
|
| 360 |
+
color_map = {
|
| 361 |
+
'blue': ['#1e3c72', '#2a5298', '#3498db'],
|
| 362 |
+
'green': ['#27ae60', '#2ecc71', '#58d68d'],
|
| 363 |
+
'red': ['#e74c3c', '#c0392b', '#ff7675'],
|
| 364 |
+
'purple': ['#6c5ce7', '#a29bfe', '#fd79a8'],
|
| 365 |
+
}
|
| 366 |
+
|
| 367 |
+
selected_colors = ['#3498db', '#2ecc71', '#e74c3c'] # Default
|
| 368 |
+
for keyword, colors in color_map.items():
|
| 369 |
+
if keyword in prompt.lower():
|
| 370 |
+
selected_colors = colors
|
| 371 |
+
break
|
| 372 |
+
|
| 373 |
+
bg_config = {
|
| 374 |
+
"type": "gradient",
|
| 375 |
+
"colors": selected_colors[:2],
|
| 376 |
+
"direction": "diagonal"
|
| 377 |
+
}
|
| 378 |
+
return create_gradient_background(bg_config, width, height)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
|
| 380 |
def validate_video_file(video_path):
|
| 381 |
"""Validate video file format and basic properties"""
|
|
|
|
| 391 |
cap.release()
|
| 392 |
return True, "Video file valid"
|
| 393 |
except Exception as e:
|
| 394 |
+
return False, f"Error validating video: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|