MogensR commited on
Commit
4c0b94f
·
1 Parent(s): 69ed918

Create docs/architecture/system-design.md

Browse files
Files changed (1) hide show
  1. docs/architecture/system-design.md +434 -0
docs/architecture/system-design.md ADDED
@@ -0,0 +1,434 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # System Architecture
2
+
3
+ ## Overview
4
+
5
+ BackgroundFX Pro is built on a modern microservices architecture designed for scalability, reliability, and performance. The system processes millions of images and videos daily while maintaining sub-second response times.
6
+
7
+ ## Architecture Diagram
8
+
9
+ ```mermaid
10
+ graph TB
11
+ subgraph "Client Layer"
12
+ WEB[Web App]
13
+ MOB[Mobile App]
14
+ API_CLIENT[API Clients]
15
+ end
16
+
17
+ subgraph "Gateway Layer"
18
+ LB[Load Balancer]
19
+ WAF[WAF/DDoS Protection]
20
+ CDN[CDN]
21
+ end
22
+
23
+ subgraph "API Layer"
24
+ GATEWAY[API Gateway]
25
+ AUTH[Auth Service]
26
+ RATE[Rate Limiter]
27
+ end
28
+
29
+ subgraph "Application Layer"
30
+ API_SVC[API Service]
31
+ PROC_SVC[Processing Service]
32
+ BG_SVC[Background Service]
33
+ USER_SVC[User Service]
34
+ BILL_SVC[Billing Service]
35
+ end
36
+
37
+ subgraph "Processing Layer"
38
+ QUEUE[Job Queue]
39
+ WORKERS[Worker Pool]
40
+ GPU[GPU Cluster]
41
+ ML[ML Models]
42
+ end
43
+
44
+ subgraph "Data Layer"
45
+ PG[(PostgreSQL)]
46
+ MONGO[(MongoDB)]
47
+ REDIS[(Redis)]
48
+ S3[Object Storage]
49
+ end
50
+
51
+ subgraph "Infrastructure"
52
+ K8S[Kubernetes]
53
+ MONITOR[Monitoring]
54
+ LOG[Logging]
55
+ end
56
+
57
+ WEB --> LB
58
+ MOB --> LB
59
+ API_CLIENT --> LB
60
+
61
+ LB --> WAF
62
+ WAF --> CDN
63
+ CDN --> GATEWAY
64
+
65
+ GATEWAY --> AUTH
66
+ GATEWAY --> RATE
67
+ GATEWAY --> API_SVC
68
+
69
+ API_SVC --> PROC_SVC
70
+ API_SVC --> BG_SVC
71
+ API_SVC --> USER_SVC
72
+ API_SVC --> BILL_SVC
73
+
74
+ PROC_SVC --> QUEUE
75
+ QUEUE --> WORKERS
76
+ WORKERS --> GPU
77
+ GPU --> ML
78
+
79
+ API_SVC --> PG
80
+ PROC_SVC --> MONGO
81
+ AUTH --> REDIS
82
+ WORKERS --> S3
83
+
84
+ K8S --> MONITOR
85
+ K8S --> LOG
86
+ ```
87
+
88
+ ## Core Components
89
+
90
+ ### 1. Gateway Layer
91
+
92
+ #### Load Balancer
93
+ - **Technology**: AWS ALB / nginx
94
+ - **Features**:
95
+ - SSL termination
96
+ - Health checks
97
+ - Auto-scaling triggers
98
+ - Geographic routing
99
+
100
+ #### WAF & DDoS Protection
101
+ - **Technology**: Cloudflare / AWS WAF
102
+ - **Protection**:
103
+ - Rate limiting
104
+ - IP blocking
105
+ - OWASP rules
106
+ - Bot detection
107
+
108
+ #### CDN
109
+ - **Technology**: CloudFront / Cloudflare
110
+ - **Caching**:
111
+ - Static assets
112
+ - Processed images
113
+ - API responses
114
+ - Edge computing
115
+
116
+ ### 2. API Layer
117
+
118
+ #### API Gateway
119
+ - **Technology**: Kong / AWS API Gateway
120
+ - **Responsibilities**:
121
+ - Request routing
122
+ - Authentication
123
+ - Rate limiting
124
+ - Request/response transformation
125
+ - API versioning
126
+
127
+ #### Authentication Service
128
+ - **Technology**: Auth0 / Custom JWT
129
+ - **Features**:
130
+ - JWT token management
131
+ - OAuth 2.0 support
132
+ - SSO integration
133
+ - MFA support
134
+
135
+ ### 3. Application Services
136
+
137
+ #### API Service
138
+ ```python
139
+ # FastAPI service structure
140
+ app/
141
+ ├── routers/
142
+ │ ├── auth.py
143
+ │ ├── processing.py
144
+ │ ├── projects.py
145
+ │ └── webhooks.py
146
+ ├── services/
147
+ │ ├── image_service.py
148
+ │ ├── video_service.py
149
+ │ └── background_service.py
150
+ ├── models/
151
+ │ └── database.py
152
+ └── main.py
153
+ ```
154
+
155
+ #### Processing Service
156
+ - **Queue Management**: Celery + RabbitMQ
157
+ - **Worker Pool**: Auto-scaling based on queue depth
158
+ - **GPU Allocation**: Dynamic GPU assignment
159
+ - **Model Loading**: Lazy loading with caching
160
+
161
+ ### 4. ML Pipeline
162
+
163
+ #### Model Architecture
164
+ ```python
165
+ models/
166
+ ├── segmentation/
167
+ │ ├── rembg/ # General purpose
168
+ │ ├── u2net/ # High quality
169
+ │ ├── deeplab/ # Semantic segmentation
170
+ │ └── custom/ # Custom trained models
171
+ ├── enhancement/
172
+ │ ├── edge_refine/ # Edge refinement
173
+ │ ├── matting/ # Alpha matting
174
+ │ └── super_res/ # Super resolution
175
+ └── generation/
176
+ ├── stable_diffusion/ # Background generation
177
+ └── style_transfer/ # Style application
178
+ ```
179
+
180
+ #### Processing Pipeline
181
+ ```python
182
+ def process_image(image: Image, options: ProcessOptions):
183
+ # 1. Pre-processing
184
+ image = preprocess(image)
185
+
186
+ # 2. Segmentation
187
+ mask = segment(image, model=options.model)
188
+
189
+ # 3. Refinement
190
+ if options.refine_edges:
191
+ mask = refine_edges(mask, image)
192
+
193
+ # 4. Matting
194
+ if options.preserve_details:
195
+ mask = alpha_matting(mask, image)
196
+
197
+ # 5. Composition
198
+ result = composite(image, mask, options.background)
199
+
200
+ # 6. Post-processing
201
+ result = postprocess(result, options)
202
+
203
+ return result
204
+ ```
205
+
206
+ ### 5. Data Architecture
207
+
208
+ #### PostgreSQL Schema
209
+ ```sql
210
+ -- Core tables
211
+ CREATE TABLE users (
212
+ id UUID PRIMARY KEY,
213
+ email VARCHAR(255) UNIQUE,
214
+ plan_id INTEGER,
215
+ created_at TIMESTAMP
216
+ );
217
+
218
+ CREATE TABLE projects (
219
+ id UUID PRIMARY KEY,
220
+ user_id UUID REFERENCES users(id),
221
+ name VARCHAR(255),
222
+ type VARCHAR(50),
223
+ created_at TIMESTAMP
224
+ );
225
+
226
+ CREATE TABLE processing_jobs (
227
+ id UUID PRIMARY KEY,
228
+ project_id UUID REFERENCES projects(id),
229
+ status VARCHAR(50),
230
+ progress INTEGER,
231
+ created_at TIMESTAMP,
232
+ completed_at TIMESTAMP
233
+ );
234
+ ```
235
+
236
+ #### MongoDB Collections
237
+ ```javascript
238
+ // Image metadata
239
+ {
240
+ _id: ObjectId,
241
+ user_id: String,
242
+ original_url: String,
243
+ processed_url: String,
244
+ mask_url: String,
245
+ metadata: {
246
+ width: Number,
247
+ height: Number,
248
+ format: String,
249
+ size: Number,
250
+ processing_time: Number
251
+ },
252
+ processing_options: Object,
253
+ created_at: Date
254
+ }
255
+ ```
256
+
257
+ #### Redis Usage
258
+ - **Session Management**: User sessions
259
+ - **Caching**: API responses, model outputs
260
+ - **Rate Limiting**: Request counting
261
+ - **Pub/Sub**: Real-time notifications
262
+ - **Job Queue**: Celery broker
263
+
264
+ ## Scalability Design
265
+
266
+ ### Horizontal Scaling
267
+ ```yaml
268
+ # Kubernetes HPA configuration
269
+ apiVersion: autoscaling/v2
270
+ kind: HorizontalPodAutoscaler
271
+ metadata:
272
+ name: api-service-hpa
273
+ spec:
274
+ scaleTargetRef:
275
+ apiVersion: apps/v1
276
+ kind: Deployment
277
+ name: api-service
278
+ minReplicas: 3
279
+ maxReplicas: 100
280
+ metrics:
281
+ - type: Resource
282
+ resource:
283
+ name: cpu
284
+ target:
285
+ type: Utilization
286
+ averageUtilization: 70
287
+ - type: Resource
288
+ resource:
289
+ name: memory
290
+ target:
291
+ type: Utilization
292
+ averageUtilization: 80
293
+ ```
294
+
295
+ ### Database Scaling
296
+ - **Read Replicas**: Geographic distribution
297
+ - **Sharding**: User-based sharding
298
+ - **Connection Pooling**: PgBouncer
299
+ - **Query Optimization**: Indexed queries
300
+
301
+ ### Caching Strategy
302
+ ```python
303
+ # Multi-level caching
304
+ @cache.memoize(timeout=3600)
305
+ def get_processed_image(image_id: str):
306
+ # L1: Application memory
307
+ if image_id in local_cache:
308
+ return local_cache[image_id]
309
+
310
+ # L2: Redis
311
+ cached = redis_client.get(f"img:{image_id}")
312
+ if cached:
313
+ return cached
314
+
315
+ # L3: CDN
316
+ cdn_url = f"https://cdn.backgroundfx.pro/{image_id}"
317
+ if check_cdn(cdn_url):
318
+ return cdn_url
319
+
320
+ # L4: Object storage
321
+ return s3_client.get_object(image_id)
322
+ ```
323
+
324
+ ## Performance Optimization
325
+
326
+ ### Image Processing
327
+ - **Batch Processing**: Process multiple images in parallel
328
+ - **GPU Optimization**: CUDA kernels for critical paths
329
+ - **Model Optimization**: TensorRT, ONNX conversion
330
+ - **Memory Management**: Stream processing for large files
331
+
332
+ ### API Performance
333
+ - **Response Compression**: Gzip/Brotli
334
+ - **Pagination**: Cursor-based pagination
335
+ - **Field Selection**: GraphQL-like field filtering
336
+ - **Async Processing**: Non-blocking I/O
337
+
338
+ ## Reliability & Fault Tolerance
339
+
340
+ ### High Availability
341
+ - **Multi-Region**: Active-active deployment
342
+ - **Failover**: Automatic failover with health checks
343
+ - **Circuit Breakers**: Prevent cascade failures
344
+ - **Retry Logic**: Exponential backoff
345
+
346
+ ### Disaster Recovery
347
+ - **Backup Strategy**:
348
+ - Database: Daily snapshots, point-in-time recovery
349
+ - Object Storage: Cross-region replication
350
+ - Configuration: Version controlled in Git
351
+
352
+ ### Monitoring & Observability
353
+ ```yaml
354
+ # Monitoring stack
355
+ monitoring:
356
+ metrics:
357
+ - Prometheus
358
+ - Grafana
359
+ logging:
360
+ - ELK Stack
361
+ - Fluentd
362
+ tracing:
363
+ - Jaeger
364
+ - OpenTelemetry
365
+ alerting:
366
+ - PagerDuty
367
+ - Slack
368
+ ```
369
+
370
+ ## Security Architecture
371
+
372
+ ### Defense in Depth
373
+ 1. **Network Security**:
374
+ - VPC isolation
375
+ - Security groups
376
+ - Network ACLs
377
+
378
+ 2. **Application Security**:
379
+ - Input validation
380
+ - SQL injection prevention
381
+ - XSS protection
382
+
383
+ 3. **Data Security**:
384
+ - Encryption at rest
385
+ - Encryption in transit
386
+ - Key management (AWS KMS)
387
+
388
+ 4. **Access Control**:
389
+ - RBAC
390
+ - API key management
391
+ - OAuth 2.0
392
+
393
+ ## Cost Optimization
394
+
395
+ ### Resource Optimization
396
+ - **Spot Instances**: For batch processing
397
+ - **Reserved Instances**: For baseline capacity
398
+ - **Auto-scaling**: Scale down during low usage
399
+ - **Storage Tiering**: S3 lifecycle policies
400
+
401
+ ### Performance vs Cost
402
+ ```python
403
+ # Dynamic quality selection based on plan
404
+ def select_processing_quality(user_plan: str, requested_quality: str):
405
+ quality_costs = {
406
+ 'low': 1,
407
+ 'medium': 2,
408
+ 'high': 5,
409
+ 'ultra': 10
410
+ }
411
+
412
+ if user_plan == 'enterprise':
413
+ return requested_quality
414
+ elif user_plan == 'pro':
415
+ return min(requested_quality, 'high')
416
+ else: # free
417
+ return 'low'
418
+ ```
419
+
420
+ ## Future Architecture Plans
421
+
422
+ ### Planned Improvements
423
+ 1. **Edge Computing**: Process at CDN edge locations
424
+ 2. **WebAssembly**: Client-side processing
425
+ 3. **Serverless**: Lambda for burst capacity
426
+ 4. **AI Optimization**: AutoML for model improvement
427
+ 5. **Blockchain**: Decentralized storage option
428
+
429
+ ---
430
+
431
+ For detailed implementation guides, see:
432
+ - [Deployment Guide](../deployment/README.md)
433
+ - [Scaling Guide](scaling.md)
434
+ - [Security Guide](security.md)