Update utilities.py
Browse files- utilities.py +196 -629
utilities.py
CHANGED
|
@@ -1,53 +1,24 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
utilities.py - Helper functions and utilities for Video Background Replacement
|
| 4 |
-
Contains all the utility functions,
|
| 5 |
-
|
| 6 |
"""
|
| 7 |
|
| 8 |
import os
|
| 9 |
-
import sys
|
| 10 |
-
import tempfile
|
| 11 |
import cv2
|
| 12 |
import numpy as np
|
| 13 |
-
from pathlib import Path
|
| 14 |
import torch
|
| 15 |
import requests
|
| 16 |
-
from PIL import Image, ImageDraw
|
| 17 |
-
import json
|
| 18 |
-
import traceback
|
| 19 |
-
import time
|
| 20 |
-
import shutil
|
| 21 |
-
import gc
|
| 22 |
-
import threading
|
| 23 |
-
import queue
|
| 24 |
-
from typing import Optional, Tuple, Dict, Any
|
| 25 |
import logging
|
|
|
|
| 26 |
|
| 27 |
-
#
|
| 28 |
-
try:
|
| 29 |
-
if 'OMP_NUM_THREADS' in os.environ:
|
| 30 |
-
del os.environ['OMP_NUM_THREADS']
|
| 31 |
-
except:
|
| 32 |
-
pass
|
| 33 |
-
|
| 34 |
-
# Suppress warnings and optimize for quality
|
| 35 |
-
import warnings
|
| 36 |
-
warnings.filterwarnings("ignore")
|
| 37 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:1024'
|
| 38 |
-
os.environ['CUDA_LAUNCH_BLOCKING'] = '0'
|
| 39 |
-
|
| 40 |
-
# Setup logging for debugging
|
| 41 |
logging.basicConfig(level=logging.INFO)
|
| 42 |
logger = logging.getLogger(__name__)
|
| 43 |
|
| 44 |
-
#
|
| 45 |
-
sam2_predictor = None
|
| 46 |
-
matanyone_model = None
|
| 47 |
-
models_loaded = False
|
| 48 |
-
loading_lock = threading.Lock()
|
| 49 |
-
|
| 50 |
-
# Professional background templates - Enhanced collection
|
| 51 |
PROFESSIONAL_BACKGROUNDS = {
|
| 52 |
"office_modern": {
|
| 53 |
"name": "Modern Office",
|
|
@@ -156,427 +127,13 @@
|
|
| 156 |
}
|
| 157 |
}
|
| 158 |
|
| 159 |
-
def
|
| 160 |
-
"""
|
| 161 |
-
global sam2_predictor, matanyone_model, models_loaded
|
| 162 |
-
|
| 163 |
-
with loading_lock:
|
| 164 |
-
if models_loaded:
|
| 165 |
-
return "✅ High-quality models already loaded"
|
| 166 |
-
|
| 167 |
-
try:
|
| 168 |
-
logger.info("🔄 Starting ENHANCED model loading with multiple fallbacks...")
|
| 169 |
-
|
| 170 |
-
# Check environment and system capabilities
|
| 171 |
-
is_hf_space = os.getenv("SPACE_ID") is not None
|
| 172 |
-
is_colab = 'google.colab' in sys.modules
|
| 173 |
-
is_kaggle = os.environ.get('KAGGLE_KERNEL_RUN_TYPE') is not None
|
| 174 |
-
|
| 175 |
-
env_type = "HuggingFace Space" if is_hf_space else "Google Colab" if is_colab else "Kaggle" if is_kaggle else "Local"
|
| 176 |
-
logger.info(f"Environment detected: {env_type}")
|
| 177 |
-
|
| 178 |
-
# Load PyTorch and check GPU
|
| 179 |
-
import torch
|
| 180 |
-
logger.info(f"✅ PyTorch {torch.__version__} - CUDA: {torch.cuda.is_available()}")
|
| 181 |
-
|
| 182 |
-
if torch.cuda.is_available():
|
| 183 |
-
try:
|
| 184 |
-
gpu_name = torch.cuda.get_device_name(0)
|
| 185 |
-
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1e9
|
| 186 |
-
logger.info(f"🎮 GPU: {gpu_name} ({gpu_memory:.1f}GB)")
|
| 187 |
-
except Exception as e:
|
| 188 |
-
logger.info(f"🎮 GPU available but details unavailable: {e}")
|
| 189 |
-
|
| 190 |
-
# === ENHANCED SAM2 LOADING WITH MULTIPLE METHODS ===
|
| 191 |
-
sam2_loaded = False
|
| 192 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 193 |
-
|
| 194 |
-
# --- Improved YAML/config handling ---
|
| 195 |
-
config_paths = [
|
| 196 |
-
"./configs", # Local ./configs directory
|
| 197 |
-
"/home/user/app/configs", # Typical in HF spaces
|
| 198 |
-
os.path.expanduser("~/.cache/sam2/configs"),
|
| 199 |
-
]
|
| 200 |
-
config_dir = None
|
| 201 |
-
for path in config_paths:
|
| 202 |
-
if os.path.isdir(path):
|
| 203 |
-
config_dir = path
|
| 204 |
-
break
|
| 205 |
-
|
| 206 |
-
# Copy bundled .yaml files to a found config_dir if not present
|
| 207 |
-
bundled_configs = ["sam2_hiera_large.yaml", "sam2_hiera_tiny.yaml"]
|
| 208 |
-
if config_dir:
|
| 209 |
-
for cfg_file in bundled_configs:
|
| 210 |
-
src = Path(cfg_file)
|
| 211 |
-
dest = Path(config_dir) / cfg_file
|
| 212 |
-
if src.exists() and not dest.exists():
|
| 213 |
-
shutil.copyfile(src, dest)
|
| 214 |
-
logger.info(f"✅ Copied {cfg_file} to {config_dir}")
|
| 215 |
-
else:
|
| 216 |
-
logger.warning("No configs directory found for SAM2! Fallback to default logic.")
|
| 217 |
-
|
| 218 |
-
# --- Method 1: Try direct import (requirements.txt installation) ---
|
| 219 |
-
try:
|
| 220 |
-
logger.info("🔄 SAM2 Method 1: Direct import from requirements...")
|
| 221 |
-
from sam2.build_sam import build_sam2
|
| 222 |
-
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 223 |
-
sam2_loaded = True
|
| 224 |
-
logger.info("✅ SAM2 imported directly from installed package")
|
| 225 |
-
except ImportError as e:
|
| 226 |
-
logger.info(f"❌ SAM2 Method 1 failed: {e}")
|
| 227 |
-
|
| 228 |
-
# --- Method 2: Clone and properly setup SAM2 ---
|
| 229 |
-
if not sam2_loaded:
|
| 230 |
-
try:
|
| 231 |
-
logger.info("🔄 SAM2 Method 2: Cloning and setting up repository...")
|
| 232 |
-
sam2_dir = "/tmp/segment-anything-2"
|
| 233 |
-
if not os.path.exists(sam2_dir):
|
| 234 |
-
logger.info("📥 Cloning SAM2 repository...")
|
| 235 |
-
clone_cmd = f"git clone --depth 1 https://github.com/facebookresearch/segment-anything-2.git {sam2_dir}"
|
| 236 |
-
result = os.system(clone_cmd)
|
| 237 |
-
if result == 0:
|
| 238 |
-
logger.info("✅ SAM2 repository cloned successfully")
|
| 239 |
-
else:
|
| 240 |
-
raise Exception("Git clone failed")
|
| 241 |
-
# Add to path
|
| 242 |
-
if sam2_dir not in sys.path:
|
| 243 |
-
sys.path.insert(0, sam2_dir)
|
| 244 |
-
# Install SAM2 dependencies if needed
|
| 245 |
-
try:
|
| 246 |
-
import hydra
|
| 247 |
-
except ImportError:
|
| 248 |
-
logger.info("Installing Hydra-core for SAM2 configs...")
|
| 249 |
-
os.system("pip install hydra-core --quiet")
|
| 250 |
-
from sam2.build_sam import build_sam2
|
| 251 |
-
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 252 |
-
sam2_loaded = True
|
| 253 |
-
logger.info("✅ SAM2 imported after cloning")
|
| 254 |
-
except Exception as e:
|
| 255 |
-
logger.info(f"❌ SAM2 Method 2 failed: {e}")
|
| 256 |
-
|
| 257 |
-
# --- Method 3: Use simplified SAM2 loading without Hydra configs ---
|
| 258 |
-
if not sam2_loaded:
|
| 259 |
-
try:
|
| 260 |
-
logger.info("🔄 SAM2 Method 3: Simplified loading without Hydra...")
|
| 261 |
-
# Download checkpoint first
|
| 262 |
-
cache_dir = os.path.expanduser("~/.cache/sam2")
|
| 263 |
-
os.makedirs(cache_dir, exist_ok=True)
|
| 264 |
-
checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt"
|
| 265 |
-
sam2_checkpoint = os.path.join(cache_dir, "sam2_hiera_tiny.pt")
|
| 266 |
-
if not os.path.exists(sam2_checkpoint):
|
| 267 |
-
logger.info("📥 Downloading SAM2 checkpoint...")
|
| 268 |
-
response = requests.get(checkpoint_url, stream=True)
|
| 269 |
-
with open(sam2_checkpoint, 'wb') as f:
|
| 270 |
-
for chunk in response.iter_content(chunk_size=8192):
|
| 271 |
-
if chunk:
|
| 272 |
-
f.write(chunk)
|
| 273 |
-
logger.info("✅ Checkpoint downloaded")
|
| 274 |
-
checkpoint = torch.load(sam2_checkpoint, map_location=device)
|
| 275 |
-
class SimpleSAM2Predictor:
|
| 276 |
-
def __init__(self, checkpoint_path, device):
|
| 277 |
-
self.device = device
|
| 278 |
-
self.checkpoint_path = checkpoint_path
|
| 279 |
-
self.image = None
|
| 280 |
-
logger.info("Using simplified SAM2 predictor")
|
| 281 |
-
def set_image(self, image):
|
| 282 |
-
self.image = image.copy()
|
| 283 |
-
def predict(self, point_coords, point_labels, multimask_output=True):
|
| 284 |
-
if self.image is None:
|
| 285 |
-
raise ValueError("No image set")
|
| 286 |
-
h, w = self.image.shape[:2]
|
| 287 |
-
mask = np.zeros((h, w), dtype=np.uint8)
|
| 288 |
-
for point in point_coords:
|
| 289 |
-
x, y = int(point[0]), int(point[1])
|
| 290 |
-
cv2.circle(mask, (x, y), min(w, h)//4, 255, -1)
|
| 291 |
-
try:
|
| 292 |
-
mask_3d = np.zeros((h, w), dtype=np.uint8)
|
| 293 |
-
mask_3d[mask > 0] = cv2.GC_PR_FGD
|
| 294 |
-
mask_3d[mask == 0] = cv2.GC_PR_BGD
|
| 295 |
-
bgd_model = np.zeros((1, 65), np.float64)
|
| 296 |
-
fgd_model = np.zeros((1, 65), np.float64)
|
| 297 |
-
cv2.grabCut(self.image, mask_3d, None, bgd_model, fgd_model, 5, cv2.GC_INIT_WITH_MASK)
|
| 298 |
-
mask = np.where((mask_3d == cv2.GC_FGD) | (mask_3d == cv2.GC_PR_FGD), 255, 0).astype('uint8')
|
| 299 |
-
except:
|
| 300 |
-
pass
|
| 301 |
-
return [mask], [1.0], None
|
| 302 |
-
sam2_predictor = SimpleSAM2Predictor(sam2_checkpoint, device)
|
| 303 |
-
sam2_loaded = True
|
| 304 |
-
logger.info("✅ Using simplified SAM2 predictor")
|
| 305 |
-
except Exception as e:
|
| 306 |
-
logger.info(f"❌ SAM2 Method 3 failed: {e}")
|
| 307 |
-
|
| 308 |
-
# --- Method 4: Install via pip and try again ---
|
| 309 |
-
if not sam2_loaded:
|
| 310 |
-
try:
|
| 311 |
-
logger.info("🔄 SAM2 Method 4: Installing via pip...")
|
| 312 |
-
os.system("pip install hydra-core omegaconf --quiet")
|
| 313 |
-
sam2_dir = "/tmp/sam2_install"
|
| 314 |
-
if os.path.exists(sam2_dir):
|
| 315 |
-
shutil.rmtree(sam2_dir)
|
| 316 |
-
clone_cmd = f"git clone https://github.com/facebookresearch/segment-anything-2.git {sam2_dir}"
|
| 317 |
-
os.system(clone_cmd)
|
| 318 |
-
install_cmd = f"cd {sam2_dir} && pip install -e . --quiet"
|
| 319 |
-
os.system(install_cmd)
|
| 320 |
-
from sam2.build_sam import build_sam2
|
| 321 |
-
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 322 |
-
sam2_loaded = True
|
| 323 |
-
logger.info("✅ SAM2 installed and imported via pip")
|
| 324 |
-
except Exception as e:
|
| 325 |
-
logger.info(f"❌ SAM2 Method 4 failed: {e}")
|
| 326 |
-
|
| 327 |
-
if not sam2_loaded:
|
| 328 |
-
logger.warning("❌ All SAM2 loading methods failed, using OpenCV fallback")
|
| 329 |
-
sam2_predictor = create_opencv_segmentation_fallback()
|
| 330 |
-
else:
|
| 331 |
-
if not isinstance(sam2_predictor, object) or sam2_predictor is None:
|
| 332 |
-
try:
|
| 333 |
-
# Choose model size based on environment and resources
|
| 334 |
-
if (is_hf_space and not torch.cuda.is_available()) or device == "cpu":
|
| 335 |
-
model_name = "sam2_hiera_tiny"
|
| 336 |
-
checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt"
|
| 337 |
-
logger.info("🔧 Using SAM2 Tiny for CPU/limited resources")
|
| 338 |
-
else:
|
| 339 |
-
model_name = "sam2_hiera_large"
|
| 340 |
-
checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt"
|
| 341 |
-
logger.info("🔧 Using SAM2 Large for maximum quality")
|
| 342 |
-
# Download checkpoint
|
| 343 |
-
cache_dir = os.path.expanduser("~/.cache/sam2")
|
| 344 |
-
os.makedirs(cache_dir, exist_ok=True)
|
| 345 |
-
sam2_checkpoint = os.path.join(cache_dir, f"{model_name}.pt")
|
| 346 |
-
if not os.path.exists(sam2_checkpoint):
|
| 347 |
-
logger.info(f"📥 Downloading {model_name} checkpoint...")
|
| 348 |
-
try:
|
| 349 |
-
response = requests.get(checkpoint_url, stream=True)
|
| 350 |
-
total_size = int(response.headers.get('content-length', 0))
|
| 351 |
-
downloaded = 0
|
| 352 |
-
with open(sam2_checkpoint, 'wb') as f:
|
| 353 |
-
for chunk in response.iter_content(chunk_size=8192):
|
| 354 |
-
if chunk:
|
| 355 |
-
f.write(chunk)
|
| 356 |
-
downloaded += len(chunk)
|
| 357 |
-
if total_size > 0 and downloaded % (total_size // 20) < 8192:
|
| 358 |
-
percent = (downloaded / total_size) * 100
|
| 359 |
-
logger.info(f"📥 Download progress: {percent:.1f}%")
|
| 360 |
-
logger.info(f"✅ {model_name} downloaded successfully")
|
| 361 |
-
except Exception as e:
|
| 362 |
-
logger.error(f"❌ Download failed: {e}")
|
| 363 |
-
raise
|
| 364 |
-
else:
|
| 365 |
-
logger.info(f"✅ Using cached {model_name}")
|
| 366 |
-
# Load SAM2 model - use the config name without .yaml extension
|
| 367 |
-
try:
|
| 368 |
-
logger.info(f"🚀 Loading SAM2 {model_name} on {device}...")
|
| 369 |
-
model_cfg = model_name
|
| 370 |
-
if device == "cpu" or is_hf_space:
|
| 371 |
-
torch.set_num_threads(min(4, os.cpu_count() or 1))
|
| 372 |
-
if torch.cuda.is_available():
|
| 373 |
-
torch.cuda.empty_cache()
|
| 374 |
-
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=device)
|
| 375 |
-
sam2_predictor = SAM2ImagePredictor(sam2_model)
|
| 376 |
-
logger.info(f"✅ SAM2 model loaded successfully on {device}")
|
| 377 |
-
except Exception as e:
|
| 378 |
-
if device == "cuda":
|
| 379 |
-
logger.warning(f"❌ GPU loading failed: {e}")
|
| 380 |
-
logger.info("🔄 Trying CPU fallback...")
|
| 381 |
-
try:
|
| 382 |
-
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cpu")
|
| 383 |
-
sam2_predictor = SAM2ImagePredictor(sam2_model)
|
| 384 |
-
device = "cpu"
|
| 385 |
-
logger.info("✅ SAM2 loaded on CPU fallback")
|
| 386 |
-
except Exception as e2:
|
| 387 |
-
logger.error(f"❌ CPU fallback also failed: {e2}")
|
| 388 |
-
logger.info("🔄 Using OpenCV segmentation fallback")
|
| 389 |
-
sam2_predictor = create_opencv_segmentation_fallback()
|
| 390 |
-
else:
|
| 391 |
-
logger.error(f"❌ SAM2 loading failed: {e}")
|
| 392 |
-
logger.info("🔄 Using OpenCV segmentation fallback")
|
| 393 |
-
sam2_predictor = create_opencv_segmentation_fallback()
|
| 394 |
-
except Exception as e:
|
| 395 |
-
logger.error(f"❌ SAM2 initialization failed: {e}")
|
| 396 |
-
sam2_predictor = create_opencv_segmentation_fallback()
|
| 397 |
-
|
| 398 |
-
# === ENHANCED MATANYONE LOADING WITH MULTIPLE METHODS ===
|
| 399 |
-
matanyone_loaded = False
|
| 400 |
-
# Method 1: Try HuggingFace Hub integration
|
| 401 |
-
try:
|
| 402 |
-
logger.info("🔄 MatAnyone Method 1: HuggingFace Hub...")
|
| 403 |
-
from huggingface_hub import hf_hub_download
|
| 404 |
-
from matanyone import InferenceCore
|
| 405 |
-
matanyone_model = InferenceCore("PeiqingYang/MatAnyone")
|
| 406 |
-
matanyone_loaded = True
|
| 407 |
-
logger.info("✅ MatAnyone loaded via HuggingFace Hub")
|
| 408 |
-
except Exception as e:
|
| 409 |
-
logger.info(f"❌ MatAnyone Method 1 failed: {e}")
|
| 410 |
-
# Method 2: Try direct import
|
| 411 |
-
if not matanyone_loaded:
|
| 412 |
-
try:
|
| 413 |
-
logger.info("🔄 MatAnyone Method 2: Direct import...")
|
| 414 |
-
matanyone_paths = [
|
| 415 |
-
'/tmp/MatAnyone',
|
| 416 |
-
'./MatAnyone',
|
| 417 |
-
'/content/MatAnyone',
|
| 418 |
-
'/kaggle/working/MatAnyone'
|
| 419 |
-
]
|
| 420 |
-
for path in matanyone_paths:
|
| 421 |
-
if os.path.exists(path):
|
| 422 |
-
sys.path.append(path)
|
| 423 |
-
break
|
| 424 |
-
from inference import MatAnyoneInference
|
| 425 |
-
matanyone_model = MatAnyoneInference()
|
| 426 |
-
matanyone_loaded = True
|
| 427 |
-
logger.info("✅ MatAnyone loaded via direct import")
|
| 428 |
-
except Exception as e:
|
| 429 |
-
logger.info(f"❌ MatAnyone Method 2 failed: {e}")
|
| 430 |
-
# Method 3: Try GitHub installation
|
| 431 |
-
if not matanyone_loaded:
|
| 432 |
-
try:
|
| 433 |
-
logger.info("🔄 MatAnyone Method 3: Installing from GitHub...")
|
| 434 |
-
install_cmd = "pip install git+https://github.com/pq-yang/MatAnyone.git"
|
| 435 |
-
result = os.system(install_cmd)
|
| 436 |
-
if result == 0:
|
| 437 |
-
from matanyone import InferenceCore
|
| 438 |
-
matanyone_model = InferenceCore("PeiqingYang/MatAnyone")
|
| 439 |
-
matanyone_loaded = True
|
| 440 |
-
logger.info("✅ MatAnyone installed and loaded via GitHub")
|
| 441 |
-
else:
|
| 442 |
-
raise Exception("GitHub install failed")
|
| 443 |
-
except Exception as e:
|
| 444 |
-
logger.info(f"❌ MatAnyone Method 3 failed: {e}")
|
| 445 |
-
# Method 4: Enhanced OpenCV fallback (CINEMA QUALITY)
|
| 446 |
-
if not matanyone_loaded:
|
| 447 |
-
logger.info("🎨 Using ENHANCED OpenCV fallback for cinema-quality matting...")
|
| 448 |
-
matanyone_model = create_enhanced_matting_fallback()
|
| 449 |
-
matanyone_loaded = True
|
| 450 |
-
|
| 451 |
-
# Memory cleanup
|
| 452 |
-
gc.collect()
|
| 453 |
-
if torch.cuda.is_available():
|
| 454 |
-
torch.cuda.empty_cache()
|
| 455 |
-
models_loaded = True
|
| 456 |
-
gpu_info = ""
|
| 457 |
-
if torch.cuda.is_available() and device == "cuda":
|
| 458 |
-
try:
|
| 459 |
-
gpu_info = f" (GPU: {torch.cuda.get_device_name(0)})"
|
| 460 |
-
except:
|
| 461 |
-
gpu_info = " (GPU)"
|
| 462 |
-
else:
|
| 463 |
-
gpu_info = " (CPU)"
|
| 464 |
-
success_msg = f"✅ ENHANCED high-quality models loaded successfully!{gpu_info}"
|
| 465 |
-
logger.info(success_msg)
|
| 466 |
-
return success_msg
|
| 467 |
-
|
| 468 |
-
except Exception as e:
|
| 469 |
-
error_msg = f"❌ Enhanced loading failed: {str(e)}"
|
| 470 |
-
logger.error(error_msg)
|
| 471 |
-
logger.error(f"Full traceback: {traceback.format_exc()}")
|
| 472 |
-
return error_msg
|
| 473 |
-
|
| 474 |
-
# ... next: create_opencv_segmentation_fallback(), create_enhanced_matting_fallback(), and much more
|
| 475 |
-
|
| 476 |
-
def create_opencv_segmentation_fallback():
|
| 477 |
-
"""Create comprehensive OpenCV-based segmentation fallback"""
|
| 478 |
-
class OpenCVSegmentationFallback:
|
| 479 |
-
def __init__(self):
|
| 480 |
-
logger.info("🔧 Initializing OpenCV segmentation fallback")
|
| 481 |
-
self.bg_subtractor = cv2.createBackgroundSubtractorMOG2(detectShadows=True)
|
| 482 |
-
self.image = None
|
| 483 |
-
|
| 484 |
-
def set_image(self, image):
|
| 485 |
-
self.image = image.copy()
|
| 486 |
-
|
| 487 |
-
def predict(self, point_coords, point_labels, multimask_output=True):
|
| 488 |
-
"""Advanced OpenCV-based person segmentation with multiple techniques"""
|
| 489 |
-
if self.image is None:
|
| 490 |
-
raise ValueError("No image set")
|
| 491 |
-
h, w = self.image.shape[:2]
|
| 492 |
-
try:
|
| 493 |
-
# Multi-method segmentation
|
| 494 |
-
masks = []
|
| 495 |
-
# Skin tone detection (HSV ranges)
|
| 496 |
-
hsv = cv2.cvtColor(self.image, cv2.COLOR_BGR2HSV)
|
| 497 |
-
lower_skin1 = np.array([0, 20, 70], dtype=np.uint8)
|
| 498 |
-
upper_skin1 = np.array([20, 255, 255], dtype=np.uint8)
|
| 499 |
-
lower_skin2 = np.array([0, 20, 70], dtype=np.uint8)
|
| 500 |
-
upper_skin2 = np.array([25, 255, 255], dtype=np.uint8)
|
| 501 |
-
skin_mask1 = cv2.inRange(hsv, lower_skin1, upper_skin1)
|
| 502 |
-
skin_mask2 = cv2.inRange(hsv, lower_skin2, upper_skin2)
|
| 503 |
-
skin_mask = cv2.bitwise_or(skin_mask1, skin_mask2)
|
| 504 |
-
# Edge detection for person outline
|
| 505 |
-
gray = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY)
|
| 506 |
-
edges = cv2.Canny(gray, 50, 150)
|
| 507 |
-
# Focus on center region (with point guidance)
|
| 508 |
-
center_x, center_y = w//2, h//2
|
| 509 |
-
if len(point_coords) > 0:
|
| 510 |
-
center_x = int(np.mean(point_coords[:, 0]))
|
| 511 |
-
center_y = int(np.mean(point_coords[:, 1]))
|
| 512 |
-
center_mask = np.zeros((h, w), dtype=np.uint8)
|
| 513 |
-
roi_width = w // 3
|
| 514 |
-
roi_height = h // 2
|
| 515 |
-
cv2.ellipse(center_mask, (center_x, center_y), (roi_width, roi_height), 0, 0, 360, 255, -1)
|
| 516 |
-
# Combine masks
|
| 517 |
-
combined_mask = cv2.bitwise_or(skin_mask, edges // 4)
|
| 518 |
-
combined_mask = cv2.bitwise_and(combined_mask, center_mask)
|
| 519 |
-
kernel_close = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
|
| 520 |
-
kernel_open = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
| 521 |
-
combined_mask = cv2.morphologyEx(combined_mask, cv2.MORPH_CLOSE, kernel_close)
|
| 522 |
-
combined_mask = cv2.morphologyEx(combined_mask, cv2.MORPH_OPEN, kernel_open)
|
| 523 |
-
contours, _ = cv2.findContours(combined_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 524 |
-
if contours:
|
| 525 |
-
largest_contour = max(contours, key=cv2.contourArea)
|
| 526 |
-
mask = np.zeros((h, w), dtype=np.uint8)
|
| 527 |
-
cv2.fillPoly(mask, [largest_contour], 255)
|
| 528 |
-
mask = cv2.GaussianBlur(mask, (5, 5), 2.0)
|
| 529 |
-
mask = (mask > 127).astype(np.uint8)
|
| 530 |
-
else:
|
| 531 |
-
mask = center_mask
|
| 532 |
-
mask = cv2.medianBlur(mask, 5)
|
| 533 |
-
masks.append(mask)
|
| 534 |
-
scores = [1.0]
|
| 535 |
-
return masks, scores, None
|
| 536 |
-
except Exception as e:
|
| 537 |
-
logger.warning(f"OpenCV segmentation error: {e}")
|
| 538 |
-
mask = np.zeros((h, w), dtype=np.uint8)
|
| 539 |
-
x1, y1 = w//4, h//6
|
| 540 |
-
x2, y2 = 3*w//4, 5*h//6
|
| 541 |
-
mask[y1:y2, x1:x2] = 255
|
| 542 |
-
return [mask], [1.0], None
|
| 543 |
-
return OpenCVSegmentationFallback()
|
| 544 |
-
|
| 545 |
-
def create_enhanced_matting_fallback():
|
| 546 |
-
"""Create enhanced matting fallback with advanced OpenCV techniques"""
|
| 547 |
-
class EnhancedMattingFallback:
|
| 548 |
-
def __init__(self):
|
| 549 |
-
logger.info("🎨 Initializing enhanced matting fallback")
|
| 550 |
-
def infer(self, image, mask):
|
| 551 |
-
"""Enhanced mask refinement using advanced OpenCV techniques"""
|
| 552 |
-
try:
|
| 553 |
-
if len(mask.shape) == 3:
|
| 554 |
-
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 555 |
-
refined_mask = cv2.bilateralFilter(mask, 9, 75, 75)
|
| 556 |
-
kernel_ellipse = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
|
| 557 |
-
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel_ellipse)
|
| 558 |
-
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_OPEN, kernel_ellipse)
|
| 559 |
-
refined_mask = cv2.GaussianBlur(refined_mask, (3, 3), 1.0)
|
| 560 |
-
edges = cv2.Canny(refined_mask, 50, 150)
|
| 561 |
-
edge_enhancement = cv2.dilate(edges, np.ones((2, 2), np.uint8), iterations=1)
|
| 562 |
-
refined_mask = cv2.bitwise_or(refined_mask, edge_enhancement // 4)
|
| 563 |
-
dist_transform = cv2.distanceTransform(refined_mask, cv2.DIST_L2, 5)
|
| 564 |
-
dist_transform = cv2.normalize(dist_transform, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
|
| 565 |
-
alpha = 0.7
|
| 566 |
-
refined_mask = cv2.addWeighted(refined_mask, alpha, dist_transform, 1-alpha, 0)
|
| 567 |
-
refined_mask = cv2.medianBlur(refined_mask, 3)
|
| 568 |
-
refined_mask = cv2.GaussianBlur(refined_mask, (1, 1), 0.5)
|
| 569 |
-
return refined_mask
|
| 570 |
-
except Exception as e:
|
| 571 |
-
logger.warning(f"Enhanced matting error: {e}")
|
| 572 |
-
return mask if len(mask.shape) == 2 else cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 573 |
-
return EnhancedMattingFallback()
|
| 574 |
-
|
| 575 |
-
def segment_person_hq(image):
|
| 576 |
-
"""High-quality person segmentation using SAM2 or fallback with optimized points"""
|
| 577 |
try:
|
| 578 |
-
|
| 579 |
h, w = image.shape[:2]
|
|
|
|
|
|
|
| 580 |
points = np.array([
|
| 581 |
[w//2, h//4], # Top-center (head)
|
| 582 |
[w//2, h//2], # Center (torso)
|
|
@@ -587,23 +144,33 @@ def segment_person_hq(image):
|
|
| 587 |
[4*w//5, h//5] # Top-right (hair/accessories)
|
| 588 |
])
|
| 589 |
labels = np.ones(len(points))
|
| 590 |
-
|
|
|
|
| 591 |
point_coords=points,
|
| 592 |
point_labels=labels,
|
| 593 |
multimask_output=True
|
| 594 |
)
|
|
|
|
|
|
|
| 595 |
best_idx = np.argmax(scores)
|
| 596 |
best_mask = masks[best_idx]
|
|
|
|
|
|
|
| 597 |
if len(best_mask.shape) > 2:
|
| 598 |
best_mask = best_mask.squeeze()
|
| 599 |
if best_mask.dtype != np.uint8:
|
| 600 |
best_mask = (best_mask * 255).astype(np.uint8)
|
|
|
|
|
|
|
| 601 |
kernel = np.ones((3, 3), np.uint8)
|
| 602 |
best_mask = cv2.morphologyEx(best_mask, cv2.MORPH_CLOSE, kernel)
|
| 603 |
best_mask = cv2.GaussianBlur(best_mask.astype(np.float32), (3, 3), 0.8)
|
|
|
|
| 604 |
return (best_mask * 255).astype(np.uint8) if best_mask.max() <= 1.0 else best_mask.astype(np.uint8)
|
|
|
|
| 605 |
except Exception as e:
|
| 606 |
logger.error(f"Segmentation error: {e}")
|
|
|
|
| 607 |
h, w = image.shape[:2]
|
| 608 |
fallback_mask = np.zeros((h, w), dtype=np.uint8)
|
| 609 |
x1, y1 = w//4, h//6
|
|
@@ -611,26 +178,129 @@ def segment_person_hq(image):
|
|
| 611 |
fallback_mask[y1:y2, x1:x2] = 255
|
| 612 |
return fallback_mask
|
| 613 |
|
| 614 |
-
def refine_mask_hq(image, mask):
|
| 615 |
-
"""Cinema-quality mask refinement
|
| 616 |
try:
|
|
|
|
| 617 |
image_filtered = cv2.bilateralFilter(image, 10, 75, 75)
|
| 618 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 619 |
if len(refined_mask.shape) == 3:
|
| 620 |
refined_mask = cv2.cvtColor(refined_mask, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
|
| 621 |
refined_mask = cv2.bilateralFilter(refined_mask, 10, 75, 75)
|
| 622 |
refined_mask = cv2.medianBlur(refined_mask, 3)
|
|
|
|
| 623 |
return refined_mask
|
|
|
|
| 624 |
except Exception as e:
|
| 625 |
logger.error(f"Mask refinement error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 626 |
return mask if len(mask.shape) == 2 else cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 627 |
|
| 628 |
def create_green_screen_background(frame):
|
| 629 |
-
"""Create green screen background
|
| 630 |
h, w = frame.shape[:2]
|
| 631 |
green_screen = np.full((h, w, 3), (0, 177, 64), dtype=np.uint8)
|
| 632 |
return green_screen
|
| 633 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 634 |
def create_professional_background(bg_config, width, height):
|
| 635 |
"""Create professional background based on configuration"""
|
| 636 |
try:
|
|
@@ -649,10 +319,11 @@ def create_professional_background(bg_config, width, height):
|
|
| 649 |
return np.full((height, width, 3), (128, 128, 128), dtype=np.uint8)
|
| 650 |
|
| 651 |
def create_gradient_background(bg_config, width, height):
|
| 652 |
-
"""Create high-quality gradient backgrounds
|
| 653 |
try:
|
| 654 |
colors = bg_config["colors"]
|
| 655 |
direction = bg_config.get("direction", "vertical")
|
|
|
|
| 656 |
# Convert hex to RGB
|
| 657 |
rgb_colors = []
|
| 658 |
for color_hex in colors:
|
|
@@ -662,10 +333,14 @@ def create_gradient_background(bg_config, width, height):
|
|
| 662 |
rgb_colors.append(rgb)
|
| 663 |
except ValueError:
|
| 664 |
rgb_colors.append((128, 128, 128))
|
|
|
|
| 665 |
if not rgb_colors:
|
| 666 |
rgb_colors = [(128, 128, 128)]
|
|
|
|
|
|
|
| 667 |
pil_img = Image.new('RGB', (width, height))
|
| 668 |
draw = ImageDraw.Draw(pil_img)
|
|
|
|
| 669 |
def interpolate_color(colors, progress):
|
| 670 |
if len(colors) == 1:
|
| 671 |
return colors[0]
|
|
@@ -686,6 +361,8 @@ def interpolate_color(colors, progress):
|
|
| 686 |
g = int(c1[1] + (c2[1] - c1[1]) * local_progress)
|
| 687 |
b = int(c1[2] + (c2[2] - c1[2]) * local_progress)
|
| 688 |
return (r, g, b)
|
|
|
|
|
|
|
| 689 |
if direction == "vertical":
|
| 690 |
for y in range(height):
|
| 691 |
progress = y / height if height > 0 else 0
|
|
@@ -717,165 +394,31 @@ def interpolate_color(colors, progress):
|
|
| 717 |
color = interpolate_color(rgb_colors, progress)
|
| 718 |
pil_img.putpixel((x, y), color)
|
| 719 |
else:
|
|
|
|
| 720 |
for y in range(height):
|
| 721 |
progress = y / height if height > 0 else 0
|
| 722 |
color = interpolate_color(rgb_colors, progress)
|
| 723 |
draw.line([(0, y), (width, y)], fill=color)
|
|
|
|
|
|
|
| 724 |
background = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
|
| 725 |
return background
|
|
|
|
| 726 |
except Exception as e:
|
| 727 |
logger.error(f"Gradient creation error: {e}")
|
|
|
|
| 728 |
background = np.zeros((height, width, 3), dtype=np.uint8)
|
| 729 |
for y in range(height):
|
| 730 |
intensity = int(255 * (y / height)) if height > 0 else 128
|
| 731 |
background[y, :] = [intensity, intensity, intensity]
|
| 732 |
return background
|
| 733 |
|
| 734 |
-
def replace_background_hq(frame, mask, background):
|
| 735 |
-
"""High-quality background replacement with advanced compositing"""
|
| 736 |
-
try:
|
| 737 |
-
background = cv2.resize(background, (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_LANCZOS4)
|
| 738 |
-
if len(mask.shape) == 3:
|
| 739 |
-
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 740 |
-
mask_float = mask.astype(np.float32) / 255.0
|
| 741 |
-
feather_radius = 3
|
| 742 |
-
kernel_size = feather_radius * 2 + 1
|
| 743 |
-
mask_feathered = cv2.GaussianBlur(mask_float, (kernel_size, kernel_size), feather_radius/3)
|
| 744 |
-
mask_3channel = np.stack([mask_feathered] * 3, axis=2)
|
| 745 |
-
frame_linear = np.power(frame.astype(np.float32) / 255.0, 2.2)
|
| 746 |
-
background_linear = np.power(background.astype(np.float32) / 255.0, 2.2)
|
| 747 |
-
result_linear = frame_linear * mask_3channel + background_linear * (1 - mask_3channel)
|
| 748 |
-
result = np.power(result_linear, 1/2.2) * 255.0
|
| 749 |
-
result = np.clip(result, 0, 255).astype(np.uint8)
|
| 750 |
-
return result
|
| 751 |
-
except Exception as e:
|
| 752 |
-
logger.error(f"Background replacement error: {e}")
|
| 753 |
-
try:
|
| 754 |
-
if len(mask.shape) == 3:
|
| 755 |
-
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 756 |
-
background = cv2.resize(background, (frame.shape[1], frame.shape[0]))
|
| 757 |
-
mask_normalized = mask.astype(np.float32) / 255.0
|
| 758 |
-
mask_3channel = np.stack([mask_normalized] * 3, axis=2)
|
| 759 |
-
result = frame * mask_3channel + background * (1 - mask_3channel)
|
| 760 |
-
return result.astype(np.uint8)
|
| 761 |
-
except:
|
| 762 |
-
return frame
|
| 763 |
-
|
| 764 |
-
def get_model_status():
|
| 765 |
-
"""Get current model loading status with detailed information"""
|
| 766 |
-
if models_loaded:
|
| 767 |
-
try:
|
| 768 |
-
gpu_info = ""
|
| 769 |
-
if torch.cuda.is_available():
|
| 770 |
-
try:
|
| 771 |
-
gpu_name = torch.cuda.get_device_name(0)
|
| 772 |
-
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1e9
|
| 773 |
-
gpu_info = f" (GPU: {gpu_name[:20]}{'...' if len(gpu_name) > 20 else ''} - {gpu_memory:.1f}GB)"
|
| 774 |
-
except:
|
| 775 |
-
gpu_info = " (GPU Available)"
|
| 776 |
-
else:
|
| 777 |
-
gpu_info = " (CPU Mode)"
|
| 778 |
-
return f"✅ ENHANCED high-quality models loaded{gpu_info}"
|
| 779 |
-
except:
|
| 780 |
-
return "✅ ENHANCED high-quality models loaded"
|
| 781 |
-
else:
|
| 782 |
-
return "⏳ Models not loaded. Click 'Load Models' for ENHANCED cinema-quality processing."
|
| 783 |
-
|
| 784 |
-
def validate_video_file(video_path):
|
| 785 |
-
"""Validate video file format and basic properties"""
|
| 786 |
-
if not video_path or not os.path.exists(video_path):
|
| 787 |
-
return False, "Video file not found"
|
| 788 |
-
try:
|
| 789 |
-
cap = cv2.VideoCapture(video_path)
|
| 790 |
-
if not cap.isOpened():
|
| 791 |
-
return False, "Cannot open video file"
|
| 792 |
-
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 793 |
-
if frame_count == 0:
|
| 794 |
-
return False, "Video appears to be empty"
|
| 795 |
-
cap.release()
|
| 796 |
-
return True, "Video file valid"
|
| 797 |
-
except Exception as e:
|
| 798 |
-
return False, f"Error validating video: {str(e)}"
|
| 799 |
-
|
| 800 |
-
def cleanup_temp_files():
|
| 801 |
-
"""Clean up temporary files to free disk space"""
|
| 802 |
-
try:
|
| 803 |
-
temp_patterns = [
|
| 804 |
-
"/tmp/processed_video_*.mp4",
|
| 805 |
-
"/tmp/final_output_*.mp4",
|
| 806 |
-
"/tmp/greenscreen_*.mp4",
|
| 807 |
-
"/tmp/gradient_*.png",
|
| 808 |
-
"/tmp/*.pt", # Model checkpoints
|
| 809 |
-
]
|
| 810 |
-
import glob
|
| 811 |
-
for pattern in temp_patterns:
|
| 812 |
-
for file_path in glob.glob(pattern):
|
| 813 |
-
try:
|
| 814 |
-
if os.path.exists(file_path):
|
| 815 |
-
if time.time() - os.path.getmtime(file_path) > 3600:
|
| 816 |
-
os.remove(file_path)
|
| 817 |
-
logger.info(f"Cleaned up: {file_path}")
|
| 818 |
-
except Exception as e:
|
| 819 |
-
logger.warning(f"Could not clean up {file_path}: {e}")
|
| 820 |
-
except Exception as e:
|
| 821 |
-
logger.warning(f"Cleanup error: {e}")
|
| 822 |
-
|
| 823 |
-
def get_available_backgrounds():
|
| 824 |
-
"""Get list of available professional backgrounds"""
|
| 825 |
-
return {key: config["name"] for key, config in PROFESSIONAL_BACKGROUNDS.items()}
|
| 826 |
-
|
| 827 |
-
def create_custom_gradient(colors, direction="vertical", width=1920, height=1080):
|
| 828 |
-
"""
|
| 829 |
-
Create a custom gradient background
|
| 830 |
-
Args:
|
| 831 |
-
colors: List of hex colors (e.g., ["#ff0000", "#00ff00"])
|
| 832 |
-
direction: "vertical", "horizontal", "diagonal", "radial"
|
| 833 |
-
width, height: Dimensions
|
| 834 |
-
Returns:
|
| 835 |
-
numpy array of the generated background
|
| 836 |
-
"""
|
| 837 |
-
try:
|
| 838 |
-
bg_config = {
|
| 839 |
-
"type": "gradient",
|
| 840 |
-
"colors": colors,
|
| 841 |
-
"direction": direction
|
| 842 |
-
}
|
| 843 |
-
return create_gradient_background(bg_config, width, height)
|
| 844 |
-
except Exception as e:
|
| 845 |
-
logger.error(f"Error creating custom gradient: {e}")
|
| 846 |
-
return None
|
| 847 |
-
|
| 848 |
-
def create_directories():
|
| 849 |
-
"""Create necessary directories for the application"""
|
| 850 |
-
try:
|
| 851 |
-
directories = [
|
| 852 |
-
"/tmp/MyAvatar",
|
| 853 |
-
"/tmp/MyAvatar/My_Videos",
|
| 854 |
-
os.path.expanduser("~/.cache/sam2"),
|
| 855 |
-
]
|
| 856 |
-
for directory in directories:
|
| 857 |
-
os.makedirs(directory, exist_ok=True)
|
| 858 |
-
logger.info(f"📁 Created/verified directory: {directory}")
|
| 859 |
-
return True
|
| 860 |
-
except Exception as e:
|
| 861 |
-
logger.error(f"Error creating directories: {e}")
|
| 862 |
-
return False
|
| 863 |
-
|
| 864 |
-
def optimize_memory_usage():
|
| 865 |
-
"""Optimize memory usage by cleaning up unused resources"""
|
| 866 |
-
try:
|
| 867 |
-
if torch.cuda.is_available():
|
| 868 |
-
torch.cuda.empty_cache()
|
| 869 |
-
gc.collect()
|
| 870 |
-
cv2.ocl.setUseOpenCL(False)
|
| 871 |
-
return True
|
| 872 |
-
except Exception as e:
|
| 873 |
-
logger.warning(f"Memory optimization failed: {e}")
|
| 874 |
-
return False
|
| 875 |
def create_procedural_background(prompt, style, width, height):
|
| 876 |
"""Create procedural background based on text prompt and style"""
|
| 877 |
try:
|
| 878 |
prompt_lower = prompt.lower()
|
|
|
|
|
|
|
| 879 |
color_map = {
|
| 880 |
'blue': ['#1e3c72', '#2a5298', '#3498db'],
|
| 881 |
'ocean': ['#74b9ff', '#0984e3', '#00cec9'],
|
|
@@ -899,12 +442,15 @@ def create_procedural_background(prompt, style, width, height):
|
|
| 899 |
'minimal': ['#ffffff', '#f1f2f6', '#ddd'],
|
| 900 |
'abstract': ['#6c5ce7', '#a29bfe', '#fd79a8']
|
| 901 |
}
|
| 902 |
-
|
|
|
|
|
|
|
| 903 |
for keyword, colors in color_map.items():
|
| 904 |
if keyword in prompt_lower:
|
| 905 |
selected_colors = colors
|
| 906 |
break
|
| 907 |
-
|
|
|
|
| 908 |
if style == "abstract":
|
| 909 |
return create_abstract_background(selected_colors, width, height)
|
| 910 |
elif style == "minimalist":
|
|
@@ -916,12 +462,14 @@ def create_procedural_background(prompt, style, width, height):
|
|
| 916 |
elif style == "artistic":
|
| 917 |
return create_artistic_background(selected_colors, width, height)
|
| 918 |
else:
|
|
|
|
| 919 |
bg_config = {
|
| 920 |
"type": "gradient",
|
| 921 |
"colors": selected_colors[:2],
|
| 922 |
"direction": "diagonal"
|
| 923 |
}
|
| 924 |
return create_gradient_background(bg_config, width, height)
|
|
|
|
| 925 |
except Exception as e:
|
| 926 |
logger.error(f"Procedural background creation failed: {e}")
|
| 927 |
return None
|
|
@@ -930,12 +478,16 @@ def create_abstract_background(colors, width, height):
|
|
| 930 |
"""Create abstract geometric background"""
|
| 931 |
try:
|
| 932 |
background = np.zeros((height, width, 3), dtype=np.uint8)
|
|
|
|
|
|
|
| 933 |
bgr_colors = []
|
| 934 |
for color in colors:
|
| 935 |
hex_color = color.lstrip('#')
|
| 936 |
rgb = tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
|
| 937 |
bgr = rgb[::-1]
|
| 938 |
bgr_colors.append(bgr)
|
|
|
|
|
|
|
| 939 |
for y in range(height):
|
| 940 |
progress = y / height
|
| 941 |
color = [
|
|
@@ -943,17 +495,22 @@ def create_abstract_background(colors, width, height):
|
|
| 943 |
for i in range(3)
|
| 944 |
]
|
| 945 |
background[y, :] = color
|
|
|
|
|
|
|
| 946 |
import random
|
| 947 |
-
random.seed(42)
|
| 948 |
for _ in range(8):
|
| 949 |
center_x = random.randint(width//4, 3*width//4)
|
| 950 |
center_y = random.randint(height//4, 3*height//4)
|
| 951 |
radius = random.randint(width//20, width//8)
|
| 952 |
color = bgr_colors[random.randint(0, len(bgr_colors)-1)]
|
|
|
|
| 953 |
overlay = background.copy()
|
| 954 |
cv2.circle(overlay, (center_x, center_y), radius, color, -1)
|
| 955 |
cv2.addWeighted(background, 0.7, overlay, 0.3, 0, background)
|
|
|
|
| 956 |
return background
|
|
|
|
| 957 |
except Exception as e:
|
| 958 |
logger.error(f"Abstract background creation failed: {e}")
|
| 959 |
return None
|
|
@@ -966,15 +523,8 @@ def create_minimalist_background(colors, width, height):
|
|
| 966 |
"colors": colors[:2],
|
| 967 |
"direction": "soft_radial"
|
| 968 |
}
|
| 969 |
-
|
| 970 |
-
|
| 971 |
-
center_x, center_y = width//2, height//2
|
| 972 |
-
hex_color = colors[0].lstrip('#')
|
| 973 |
-
rgb = tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
|
| 974 |
-
bgr = rgb[::-1]
|
| 975 |
-
cv2.circle(overlay, (center_x, center_y), min(width, height)//3, bgr, -1)
|
| 976 |
-
cv2.addWeighted(background, 0.95, overlay, 0.05, 0, background)
|
| 977 |
-
return background
|
| 978 |
except Exception as e:
|
| 979 |
logger.error(f"Minimalist background creation failed: {e}")
|
| 980 |
return None
|
|
@@ -988,14 +538,18 @@ def create_corporate_background(colors, width, height):
|
|
| 988 |
"direction": "diagonal"
|
| 989 |
}
|
| 990 |
background = create_gradient_background(bg_config, width, height)
|
|
|
|
|
|
|
| 991 |
grid_color = (80, 80, 80)
|
| 992 |
grid_spacing = width // 20
|
| 993 |
for x in range(0, width, grid_spacing):
|
| 994 |
cv2.line(background, (x, 0), (x, height), grid_color, 1)
|
| 995 |
for y in range(0, height, grid_spacing):
|
| 996 |
cv2.line(background, (0, y), (width, y), grid_color, 1)
|
|
|
|
| 997 |
background = cv2.GaussianBlur(background, (3, 3), 1.0)
|
| 998 |
return background
|
|
|
|
| 999 |
except Exception as e:
|
| 1000 |
logger.error(f"Corporate background creation failed: {e}")
|
| 1001 |
return None
|
|
@@ -1008,21 +562,8 @@ def create_nature_background(colors, width, height):
|
|
| 1008 |
"colors": ['#2d5016', '#3c6e1f', '#4caf50'],
|
| 1009 |
"direction": "vertical"
|
| 1010 |
}
|
| 1011 |
-
|
| 1012 |
-
|
| 1013 |
-
random.seed(42)
|
| 1014 |
-
overlay = background.copy()
|
| 1015 |
-
for _ in range(5):
|
| 1016 |
-
center_x = random.randint(width//6, 5*width//6)
|
| 1017 |
-
center_y = random.randint(height//6, 5*height//6)
|
| 1018 |
-
axes_x = random.randint(width//20, width//6)
|
| 1019 |
-
axes_y = random.randint(height//20, height//6)
|
| 1020 |
-
angle = random.randint(0, 180)
|
| 1021 |
-
color = (random.randint(40, 80), random.randint(120, 160), random.randint(30, 70))
|
| 1022 |
-
cv2.ellipse(overlay, (center_x, center_y), (axes_x, axes_y), angle, 0, 360, color, -1)
|
| 1023 |
-
cv2.addWeighted(background, 0.8, overlay, 0.2, 0, background)
|
| 1024 |
-
background = cv2.GaussianBlur(background, (5, 5), 2.0)
|
| 1025 |
-
return background
|
| 1026 |
except Exception as e:
|
| 1027 |
logger.error(f"Nature background creation failed: {e}")
|
| 1028 |
return None
|
|
@@ -1036,6 +577,8 @@ def create_artistic_background(colors, width, height):
|
|
| 1036 |
"direction": "diagonal"
|
| 1037 |
}
|
| 1038 |
background = create_gradient_background(bg_config, width, height)
|
|
|
|
|
|
|
| 1039 |
import random
|
| 1040 |
random.seed(42)
|
| 1041 |
bgr_colors = []
|
|
@@ -1043,6 +586,7 @@ def create_artistic_background(colors, width, height):
|
|
| 1043 |
hex_color = color.lstrip('#')
|
| 1044 |
rgb = tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
|
| 1045 |
bgr_colors.append(rgb[::-1])
|
|
|
|
| 1046 |
overlay = background.copy()
|
| 1047 |
for i in range(3):
|
| 1048 |
pts = []
|
|
@@ -1052,12 +596,35 @@ def create_artistic_background(colors, width, height):
|
|
| 1052 |
pts = np.array(pts, np.int32)
|
| 1053 |
color = bgr_colors[i % len(bgr_colors)]
|
| 1054 |
cv2.polylines(overlay, [pts], False, color, thickness=width//50)
|
|
|
|
| 1055 |
cv2.addWeighted(background, 0.7, overlay, 0.3, 0, background)
|
| 1056 |
background = cv2.GaussianBlur(background, (3, 3), 1.0)
|
| 1057 |
return background
|
|
|
|
| 1058 |
except Exception as e:
|
| 1059 |
logger.error(f"Artistic background creation failed: {e}")
|
| 1060 |
return None
|
| 1061 |
|
| 1062 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1063 |
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
utilities.py - Helper functions and utilities for Video Background Replacement
|
| 4 |
+
Contains all the utility functions, background creation functions
|
| 5 |
+
UPDATED: Models passed as parameters instead of globals
|
| 6 |
"""
|
| 7 |
|
| 8 |
import os
|
|
|
|
|
|
|
| 9 |
import cv2
|
| 10 |
import numpy as np
|
|
|
|
| 11 |
import torch
|
| 12 |
import requests
|
| 13 |
+
from PIL import Image, ImageDraw
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
import logging
|
| 15 |
+
import time
|
| 16 |
|
| 17 |
+
# Setup logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
logging.basicConfig(level=logging.INFO)
|
| 19 |
logger = logging.getLogger(__name__)
|
| 20 |
|
| 21 |
+
# Professional background templates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
PROFESSIONAL_BACKGROUNDS = {
|
| 23 |
"office_modern": {
|
| 24 |
"name": "Modern Office",
|
|
|
|
| 127 |
}
|
| 128 |
}
|
| 129 |
|
| 130 |
+
def segment_person_hq(image, predictor):
|
| 131 |
+
"""High-quality person segmentation using provided SAM2 predictor"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
try:
|
| 133 |
+
predictor.set_image(image)
|
| 134 |
h, w = image.shape[:2]
|
| 135 |
+
|
| 136 |
+
# Strategic point placement for person detection
|
| 137 |
points = np.array([
|
| 138 |
[w//2, h//4], # Top-center (head)
|
| 139 |
[w//2, h//2], # Center (torso)
|
|
|
|
| 144 |
[4*w//5, h//5] # Top-right (hair/accessories)
|
| 145 |
])
|
| 146 |
labels = np.ones(len(points))
|
| 147 |
+
|
| 148 |
+
masks, scores, _ = predictor.predict(
|
| 149 |
point_coords=points,
|
| 150 |
point_labels=labels,
|
| 151 |
multimask_output=True
|
| 152 |
)
|
| 153 |
+
|
| 154 |
+
# Select best mask
|
| 155 |
best_idx = np.argmax(scores)
|
| 156 |
best_mask = masks[best_idx]
|
| 157 |
+
|
| 158 |
+
# Ensure proper format
|
| 159 |
if len(best_mask.shape) > 2:
|
| 160 |
best_mask = best_mask.squeeze()
|
| 161 |
if best_mask.dtype != np.uint8:
|
| 162 |
best_mask = (best_mask * 255).astype(np.uint8)
|
| 163 |
+
|
| 164 |
+
# Post-process mask
|
| 165 |
kernel = np.ones((3, 3), np.uint8)
|
| 166 |
best_mask = cv2.morphologyEx(best_mask, cv2.MORPH_CLOSE, kernel)
|
| 167 |
best_mask = cv2.GaussianBlur(best_mask.astype(np.float32), (3, 3), 0.8)
|
| 168 |
+
|
| 169 |
return (best_mask * 255).astype(np.uint8) if best_mask.max() <= 1.0 else best_mask.astype(np.uint8)
|
| 170 |
+
|
| 171 |
except Exception as e:
|
| 172 |
logger.error(f"Segmentation error: {e}")
|
| 173 |
+
# Fallback to simple center mask
|
| 174 |
h, w = image.shape[:2]
|
| 175 |
fallback_mask = np.zeros((h, w), dtype=np.uint8)
|
| 176 |
x1, y1 = w//4, h//6
|
|
|
|
| 178 |
fallback_mask[y1:y2, x1:x2] = 255
|
| 179 |
return fallback_mask
|
| 180 |
|
| 181 |
+
def refine_mask_hq(image, mask, matanyone_processor):
|
| 182 |
+
"""Cinema-quality mask refinement using provided MatAnyone processor"""
|
| 183 |
try:
|
| 184 |
+
# Prepare image for matting
|
| 185 |
image_filtered = cv2.bilateralFilter(image, 10, 75, 75)
|
| 186 |
+
|
| 187 |
+
# Use MatAnyone for refinement
|
| 188 |
+
if hasattr(matanyone_processor, 'process_video'):
|
| 189 |
+
# If it's the HF InferenceCore, we need to handle differently
|
| 190 |
+
# For now, use enhanced OpenCV refinement
|
| 191 |
+
refined_mask = enhance_mask_opencv(image_filtered, mask)
|
| 192 |
+
else:
|
| 193 |
+
# Direct inference call
|
| 194 |
+
refined_mask = matanyone_processor.infer(image_filtered, mask)
|
| 195 |
+
|
| 196 |
+
# Ensure proper format
|
| 197 |
if len(refined_mask.shape) == 3:
|
| 198 |
refined_mask = cv2.cvtColor(refined_mask, cv2.COLOR_BGR2GRAY)
|
| 199 |
+
|
| 200 |
+
# Additional refinement
|
| 201 |
refined_mask = cv2.bilateralFilter(refined_mask, 10, 75, 75)
|
| 202 |
refined_mask = cv2.medianBlur(refined_mask, 3)
|
| 203 |
+
|
| 204 |
return refined_mask
|
| 205 |
+
|
| 206 |
except Exception as e:
|
| 207 |
logger.error(f"Mask refinement error: {e}")
|
| 208 |
+
return enhance_mask_opencv(image, mask)
|
| 209 |
+
|
| 210 |
+
def enhance_mask_opencv(image, mask):
|
| 211 |
+
"""Enhanced mask refinement using OpenCV techniques"""
|
| 212 |
+
try:
|
| 213 |
+
if len(mask.shape) == 3:
|
| 214 |
+
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 215 |
+
|
| 216 |
+
# Bilateral filtering for edge preservation
|
| 217 |
+
refined_mask = cv2.bilateralFilter(mask, 9, 75, 75)
|
| 218 |
+
|
| 219 |
+
# Morphological operations
|
| 220 |
+
kernel_ellipse = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
|
| 221 |
+
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel_ellipse)
|
| 222 |
+
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_OPEN, kernel_ellipse)
|
| 223 |
+
|
| 224 |
+
# Gaussian blur for smoothing
|
| 225 |
+
refined_mask = cv2.GaussianBlur(refined_mask, (3, 3), 1.0)
|
| 226 |
+
|
| 227 |
+
# Edge enhancement
|
| 228 |
+
edges = cv2.Canny(refined_mask, 50, 150)
|
| 229 |
+
edge_enhancement = cv2.dilate(edges, np.ones((2, 2), np.uint8), iterations=1)
|
| 230 |
+
refined_mask = cv2.bitwise_or(refined_mask, edge_enhancement // 4)
|
| 231 |
+
|
| 232 |
+
# Distance transform for better interior
|
| 233 |
+
dist_transform = cv2.distanceTransform(refined_mask, cv2.DIST_L2, 5)
|
| 234 |
+
dist_transform = cv2.normalize(dist_transform, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
|
| 235 |
+
|
| 236 |
+
# Blend with distance transform
|
| 237 |
+
alpha = 0.7
|
| 238 |
+
refined_mask = cv2.addWeighted(refined_mask, alpha, dist_transform, 1-alpha, 0)
|
| 239 |
+
|
| 240 |
+
# Final smoothing
|
| 241 |
+
refined_mask = cv2.medianBlur(refined_mask, 3)
|
| 242 |
+
refined_mask = cv2.GaussianBlur(refined_mask, (1, 1), 0.5)
|
| 243 |
+
|
| 244 |
+
return refined_mask
|
| 245 |
+
|
| 246 |
+
except Exception as e:
|
| 247 |
+
logger.warning(f"Enhanced mask refinement error: {e}")
|
| 248 |
return mask if len(mask.shape) == 2 else cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 249 |
|
| 250 |
def create_green_screen_background(frame):
|
| 251 |
+
"""Create green screen background for two-stage processing"""
|
| 252 |
h, w = frame.shape[:2]
|
| 253 |
green_screen = np.full((h, w, 3), (0, 177, 64), dtype=np.uint8)
|
| 254 |
return green_screen
|
| 255 |
|
| 256 |
+
def replace_background_hq(frame, mask, background):
|
| 257 |
+
"""High-quality background replacement with advanced compositing"""
|
| 258 |
+
try:
|
| 259 |
+
# Resize background to match frame
|
| 260 |
+
background = cv2.resize(background, (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_LANCZOS4)
|
| 261 |
+
|
| 262 |
+
# Ensure mask is single channel
|
| 263 |
+
if len(mask.shape) == 3:
|
| 264 |
+
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 265 |
+
|
| 266 |
+
# Normalize mask to 0-1 range
|
| 267 |
+
mask_float = mask.astype(np.float32) / 255.0
|
| 268 |
+
|
| 269 |
+
# Edge feathering for smooth transitions
|
| 270 |
+
feather_radius = 3
|
| 271 |
+
kernel_size = feather_radius * 2 + 1
|
| 272 |
+
mask_feathered = cv2.GaussianBlur(mask_float, (kernel_size, kernel_size), feather_radius/3)
|
| 273 |
+
|
| 274 |
+
# Create 3-channel mask
|
| 275 |
+
mask_3channel = np.stack([mask_feathered] * 3, axis=2)
|
| 276 |
+
|
| 277 |
+
# Linear gamma correction for proper compositing
|
| 278 |
+
frame_linear = np.power(frame.astype(np.float32) / 255.0, 2.2)
|
| 279 |
+
background_linear = np.power(background.astype(np.float32) / 255.0, 2.2)
|
| 280 |
+
|
| 281 |
+
# Composite in linear space
|
| 282 |
+
result_linear = frame_linear * mask_3channel + background_linear * (1 - mask_3channel)
|
| 283 |
+
|
| 284 |
+
# Convert back to gamma space
|
| 285 |
+
result = np.power(result_linear, 1/2.2) * 255.0
|
| 286 |
+
result = np.clip(result, 0, 255).astype(np.uint8)
|
| 287 |
+
|
| 288 |
+
return result
|
| 289 |
+
|
| 290 |
+
except Exception as e:
|
| 291 |
+
logger.error(f"Background replacement error: {e}")
|
| 292 |
+
# Fallback to simple replacement
|
| 293 |
+
try:
|
| 294 |
+
if len(mask.shape) == 3:
|
| 295 |
+
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 296 |
+
background = cv2.resize(background, (frame.shape[1], frame.shape[0]))
|
| 297 |
+
mask_normalized = mask.astype(np.float32) / 255.0
|
| 298 |
+
mask_3channel = np.stack([mask_normalized] * 3, axis=2)
|
| 299 |
+
result = frame * mask_3channel + background * (1 - mask_3channel)
|
| 300 |
+
return result.astype(np.uint8)
|
| 301 |
+
except:
|
| 302 |
+
return frame
|
| 303 |
+
|
| 304 |
def create_professional_background(bg_config, width, height):
|
| 305 |
"""Create professional background based on configuration"""
|
| 306 |
try:
|
|
|
|
| 319 |
return np.full((height, width, 3), (128, 128, 128), dtype=np.uint8)
|
| 320 |
|
| 321 |
def create_gradient_background(bg_config, width, height):
|
| 322 |
+
"""Create high-quality gradient backgrounds"""
|
| 323 |
try:
|
| 324 |
colors = bg_config["colors"]
|
| 325 |
direction = bg_config.get("direction", "vertical")
|
| 326 |
+
|
| 327 |
# Convert hex to RGB
|
| 328 |
rgb_colors = []
|
| 329 |
for color_hex in colors:
|
|
|
|
| 333 |
rgb_colors.append(rgb)
|
| 334 |
except ValueError:
|
| 335 |
rgb_colors.append((128, 128, 128))
|
| 336 |
+
|
| 337 |
if not rgb_colors:
|
| 338 |
rgb_colors = [(128, 128, 128)]
|
| 339 |
+
|
| 340 |
+
# Create PIL image for gradient
|
| 341 |
pil_img = Image.new('RGB', (width, height))
|
| 342 |
draw = ImageDraw.Draw(pil_img)
|
| 343 |
+
|
| 344 |
def interpolate_color(colors, progress):
|
| 345 |
if len(colors) == 1:
|
| 346 |
return colors[0]
|
|
|
|
| 361 |
g = int(c1[1] + (c2[1] - c1[1]) * local_progress)
|
| 362 |
b = int(c1[2] + (c2[2] - c1[2]) * local_progress)
|
| 363 |
return (r, g, b)
|
| 364 |
+
|
| 365 |
+
# Generate gradient based on direction
|
| 366 |
if direction == "vertical":
|
| 367 |
for y in range(height):
|
| 368 |
progress = y / height if height > 0 else 0
|
|
|
|
| 394 |
color = interpolate_color(rgb_colors, progress)
|
| 395 |
pil_img.putpixel((x, y), color)
|
| 396 |
else:
|
| 397 |
+
# Default to vertical
|
| 398 |
for y in range(height):
|
| 399 |
progress = y / height if height > 0 else 0
|
| 400 |
color = interpolate_color(rgb_colors, progress)
|
| 401 |
draw.line([(0, y), (width, y)], fill=color)
|
| 402 |
+
|
| 403 |
+
# Convert to OpenCV format
|
| 404 |
background = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
|
| 405 |
return background
|
| 406 |
+
|
| 407 |
except Exception as e:
|
| 408 |
logger.error(f"Gradient creation error: {e}")
|
| 409 |
+
# Fallback gradient
|
| 410 |
background = np.zeros((height, width, 3), dtype=np.uint8)
|
| 411 |
for y in range(height):
|
| 412 |
intensity = int(255 * (y / height)) if height > 0 else 128
|
| 413 |
background[y, :] = [intensity, intensity, intensity]
|
| 414 |
return background
|
| 415 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 416 |
def create_procedural_background(prompt, style, width, height):
|
| 417 |
"""Create procedural background based on text prompt and style"""
|
| 418 |
try:
|
| 419 |
prompt_lower = prompt.lower()
|
| 420 |
+
|
| 421 |
+
# Color mapping based on keywords
|
| 422 |
color_map = {
|
| 423 |
'blue': ['#1e3c72', '#2a5298', '#3498db'],
|
| 424 |
'ocean': ['#74b9ff', '#0984e3', '#00cec9'],
|
|
|
|
| 442 |
'minimal': ['#ffffff', '#f1f2f6', '#ddd'],
|
| 443 |
'abstract': ['#6c5ce7', '#a29bfe', '#fd79a8']
|
| 444 |
}
|
| 445 |
+
|
| 446 |
+
# Select colors based on prompt
|
| 447 |
+
selected_colors = ['#3498db', '#2ecc71', '#e74c3c'] # Default
|
| 448 |
for keyword, colors in color_map.items():
|
| 449 |
if keyword in prompt_lower:
|
| 450 |
selected_colors = colors
|
| 451 |
break
|
| 452 |
+
|
| 453 |
+
# Create background based on style
|
| 454 |
if style == "abstract":
|
| 455 |
return create_abstract_background(selected_colors, width, height)
|
| 456 |
elif style == "minimalist":
|
|
|
|
| 462 |
elif style == "artistic":
|
| 463 |
return create_artistic_background(selected_colors, width, height)
|
| 464 |
else:
|
| 465 |
+
# Default gradient
|
| 466 |
bg_config = {
|
| 467 |
"type": "gradient",
|
| 468 |
"colors": selected_colors[:2],
|
| 469 |
"direction": "diagonal"
|
| 470 |
}
|
| 471 |
return create_gradient_background(bg_config, width, height)
|
| 472 |
+
|
| 473 |
except Exception as e:
|
| 474 |
logger.error(f"Procedural background creation failed: {e}")
|
| 475 |
return None
|
|
|
|
| 478 |
"""Create abstract geometric background"""
|
| 479 |
try:
|
| 480 |
background = np.zeros((height, width, 3), dtype=np.uint8)
|
| 481 |
+
|
| 482 |
+
# Convert hex colors to BGR
|
| 483 |
bgr_colors = []
|
| 484 |
for color in colors:
|
| 485 |
hex_color = color.lstrip('#')
|
| 486 |
rgb = tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
|
| 487 |
bgr = rgb[::-1]
|
| 488 |
bgr_colors.append(bgr)
|
| 489 |
+
|
| 490 |
+
# Create base gradient
|
| 491 |
for y in range(height):
|
| 492 |
progress = y / height
|
| 493 |
color = [
|
|
|
|
| 495 |
for i in range(3)
|
| 496 |
]
|
| 497 |
background[y, :] = color
|
| 498 |
+
|
| 499 |
+
# Add geometric shapes
|
| 500 |
import random
|
| 501 |
+
random.seed(42) # Consistent results
|
| 502 |
for _ in range(8):
|
| 503 |
center_x = random.randint(width//4, 3*width//4)
|
| 504 |
center_y = random.randint(height//4, 3*height//4)
|
| 505 |
radius = random.randint(width//20, width//8)
|
| 506 |
color = bgr_colors[random.randint(0, len(bgr_colors)-1)]
|
| 507 |
+
|
| 508 |
overlay = background.copy()
|
| 509 |
cv2.circle(overlay, (center_x, center_y), radius, color, -1)
|
| 510 |
cv2.addWeighted(background, 0.7, overlay, 0.3, 0, background)
|
| 511 |
+
|
| 512 |
return background
|
| 513 |
+
|
| 514 |
except Exception as e:
|
| 515 |
logger.error(f"Abstract background creation failed: {e}")
|
| 516 |
return None
|
|
|
|
| 523 |
"colors": colors[:2],
|
| 524 |
"direction": "soft_radial"
|
| 525 |
}
|
| 526 |
+
return create_gradient_background(bg_config, width, height)
|
| 527 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 528 |
except Exception as e:
|
| 529 |
logger.error(f"Minimalist background creation failed: {e}")
|
| 530 |
return None
|
|
|
|
| 538 |
"direction": "diagonal"
|
| 539 |
}
|
| 540 |
background = create_gradient_background(bg_config, width, height)
|
| 541 |
+
|
| 542 |
+
# Add subtle grid pattern
|
| 543 |
grid_color = (80, 80, 80)
|
| 544 |
grid_spacing = width // 20
|
| 545 |
for x in range(0, width, grid_spacing):
|
| 546 |
cv2.line(background, (x, 0), (x, height), grid_color, 1)
|
| 547 |
for y in range(0, height, grid_spacing):
|
| 548 |
cv2.line(background, (0, y), (width, y), grid_color, 1)
|
| 549 |
+
|
| 550 |
background = cv2.GaussianBlur(background, (3, 3), 1.0)
|
| 551 |
return background
|
| 552 |
+
|
| 553 |
except Exception as e:
|
| 554 |
logger.error(f"Corporate background creation failed: {e}")
|
| 555 |
return None
|
|
|
|
| 562 |
"colors": ['#2d5016', '#3c6e1f', '#4caf50'],
|
| 563 |
"direction": "vertical"
|
| 564 |
}
|
| 565 |
+
return create_gradient_background(bg_config, width, height)
|
| 566 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 567 |
except Exception as e:
|
| 568 |
logger.error(f"Nature background creation failed: {e}")
|
| 569 |
return None
|
|
|
|
| 577 |
"direction": "diagonal"
|
| 578 |
}
|
| 579 |
background = create_gradient_background(bg_config, width, height)
|
| 580 |
+
|
| 581 |
+
# Add artistic wave patterns
|
| 582 |
import random
|
| 583 |
random.seed(42)
|
| 584 |
bgr_colors = []
|
|
|
|
| 586 |
hex_color = color.lstrip('#')
|
| 587 |
rgb = tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
|
| 588 |
bgr_colors.append(rgb[::-1])
|
| 589 |
+
|
| 590 |
overlay = background.copy()
|
| 591 |
for i in range(3):
|
| 592 |
pts = []
|
|
|
|
| 596 |
pts = np.array(pts, np.int32)
|
| 597 |
color = bgr_colors[i % len(bgr_colors)]
|
| 598 |
cv2.polylines(overlay, [pts], False, color, thickness=width//50)
|
| 599 |
+
|
| 600 |
cv2.addWeighted(background, 0.7, overlay, 0.3, 0, background)
|
| 601 |
background = cv2.GaussianBlur(background, (3, 3), 1.0)
|
| 602 |
return background
|
| 603 |
+
|
| 604 |
except Exception as e:
|
| 605 |
logger.error(f"Artistic background creation failed: {e}")
|
| 606 |
return None
|
| 607 |
|
| 608 |
+
def get_model_status():
|
| 609 |
+
"""Get current model loading status"""
|
| 610 |
+
return "Models loaded in app.py - ready for processing"
|
| 611 |
+
|
| 612 |
+
def validate_video_file(video_path):
|
| 613 |
+
"""Validate video file format and basic properties"""
|
| 614 |
+
if not video_path or not os.path.exists(video_path):
|
| 615 |
+
return False, "Video file not found"
|
| 616 |
+
try:
|
| 617 |
+
cap = cv2.VideoCapture(video_path)
|
| 618 |
+
if not cap.isOpened():
|
| 619 |
+
return False, "Cannot open video file"
|
| 620 |
+
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 621 |
+
if frame_count == 0:
|
| 622 |
+
return False, "Video appears to be empty"
|
| 623 |
+
cap.release()
|
| 624 |
+
return True, "Video file valid"
|
| 625 |
+
except Exception as e:
|
| 626 |
+
return False, f"Error validating video: {str(e)}"
|
| 627 |
|
| 628 |
+
def get_available_backgrounds():
|
| 629 |
+
"""Get list of available professional backgrounds"""
|
| 630 |
+
return {key: config["name"] for key, config in PROFESSIONAL_BACKGROUNDS.items()}
|