Update utils/refinement.py
Browse files- utils/refinement.py +97 -15
utils/refinement.py
CHANGED
|
@@ -10,6 +10,7 @@
|
|
| 10 |
|
| 11 |
import cv2
|
| 12 |
import numpy as np
|
|
|
|
| 13 |
|
| 14 |
log = logging.getLogger(__name__)
|
| 15 |
|
|
@@ -84,21 +85,102 @@ def _refine_with_matanyone(
|
|
| 84 |
model: Any
|
| 85 |
) -> np.ndarray:
|
| 86 |
"""Use MatAnyone model for mask refinement."""
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
# ============================================================================
|
| 104 |
# CLASSICAL REFINEMENT
|
|
|
|
| 10 |
|
| 11 |
import cv2
|
| 12 |
import numpy as np
|
| 13 |
+
import torch
|
| 14 |
|
| 15 |
log = logging.getLogger(__name__)
|
| 16 |
|
|
|
|
| 85 |
model: Any
|
| 86 |
) -> np.ndarray:
|
| 87 |
"""Use MatAnyone model for mask refinement."""
|
| 88 |
+
try:
|
| 89 |
+
# MatAnyone's InferenceCore expects torch tensors
|
| 90 |
+
# Convert BGR to RGB and normalize
|
| 91 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 92 |
+
h, w = image_rgb.shape[:2]
|
| 93 |
+
|
| 94 |
+
# Convert to torch tensor format (C, H, W) and normalize to [0, 1]
|
| 95 |
+
image_tensor = torch.from_numpy(image_rgb).permute(2, 0, 1).float() / 255.0
|
| 96 |
+
image_tensor = image_tensor.unsqueeze(0) # Add batch dimension (1, C, H, W)
|
| 97 |
+
|
| 98 |
+
# Ensure mask is binary uint8
|
| 99 |
+
if mask.dtype != np.uint8:
|
| 100 |
+
mask = (mask * 255).astype(np.uint8) if mask.max() <= 1 else mask.astype(np.uint8)
|
| 101 |
+
if mask.ndim == 3:
|
| 102 |
+
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 103 |
+
|
| 104 |
+
# Convert mask to tensor
|
| 105 |
+
mask_tensor = torch.from_numpy(mask).float() / 255.0
|
| 106 |
+
mask_tensor = mask_tensor.unsqueeze(0).unsqueeze(0) # (1, 1, H, W)
|
| 107 |
+
|
| 108 |
+
# MatAnyone InferenceCore workflow for single frame
|
| 109 |
+
# The model should have been initialized as InferenceCore(matanyone_model)
|
| 110 |
+
result = None
|
| 111 |
+
|
| 112 |
+
if hasattr(model, 'process_frame'):
|
| 113 |
+
# Single frame processing method
|
| 114 |
+
with torch.no_grad():
|
| 115 |
+
result = model.process_frame(image_tensor, mask_tensor)
|
| 116 |
+
elif hasattr(model, 'step'):
|
| 117 |
+
# Step method for iterative processing
|
| 118 |
+
with torch.no_grad():
|
| 119 |
+
# Initialize memory with first frame
|
| 120 |
+
model.reset()
|
| 121 |
+
# Process frame with mask
|
| 122 |
+
result = model.step(image_tensor, mask_tensor)
|
| 123 |
+
elif hasattr(model, 'forward'):
|
| 124 |
+
# Direct forward pass
|
| 125 |
+
with torch.no_grad():
|
| 126 |
+
result = model.forward(image_tensor, mask_tensor)
|
| 127 |
+
elif hasattr(model, 'predict'):
|
| 128 |
+
# Predict method
|
| 129 |
+
with torch.no_grad():
|
| 130 |
+
result = model.predict(image_tensor, mask_tensor)
|
| 131 |
+
elif hasattr(model, '__call__'):
|
| 132 |
+
# Callable model
|
| 133 |
+
with torch.no_grad():
|
| 134 |
+
result = model(image_tensor, mask_tensor)
|
| 135 |
+
else:
|
| 136 |
+
# Try to find any method that might work
|
| 137 |
+
methods = [m for m in dir(model) if not m.startswith('_')]
|
| 138 |
+
processing_methods = [m for m in methods if any(keyword in m.lower()
|
| 139 |
+
for keyword in ['process', 'refine', 'matte', 'alpha', 'predict'])]
|
| 140 |
+
if processing_methods:
|
| 141 |
+
method = getattr(model, processing_methods[0])
|
| 142 |
+
with torch.no_grad():
|
| 143 |
+
result = method(image_tensor, mask_tensor)
|
| 144 |
+
else:
|
| 145 |
+
raise MaskRefinementError(f"MatAnyone model has no recognized processing method. Available methods: {methods}")
|
| 146 |
+
|
| 147 |
+
if result is None:
|
| 148 |
+
raise MaskRefinementError("MatAnyone returned None")
|
| 149 |
+
|
| 150 |
+
# Handle different return types
|
| 151 |
+
if isinstance(result, tuple) or isinstance(result, list):
|
| 152 |
+
# Extract alpha matte from tuple/list result
|
| 153 |
+
alpha = result[0] if len(result) > 0 else None
|
| 154 |
+
elif isinstance(result, dict):
|
| 155 |
+
# Extract from dictionary result
|
| 156 |
+
alpha = result.get('alpha', result.get('matte', result.get('mask', None)))
|
| 157 |
+
else:
|
| 158 |
+
alpha = result
|
| 159 |
+
|
| 160 |
+
if alpha is None:
|
| 161 |
+
raise MaskRefinementError("Could not extract alpha matte from MatAnyone result")
|
| 162 |
+
|
| 163 |
+
# Convert back to numpy
|
| 164 |
+
if isinstance(alpha, torch.Tensor):
|
| 165 |
+
alpha = alpha.squeeze().cpu().numpy() # Remove batch dimensions
|
| 166 |
+
|
| 167 |
+
# Ensure proper shape
|
| 168 |
+
if alpha.ndim == 3:
|
| 169 |
+
alpha = alpha[0] if alpha.shape[0] == 1 else alpha.mean(axis=0)
|
| 170 |
+
|
| 171 |
+
# Convert to uint8
|
| 172 |
+
if alpha.dtype != np.uint8:
|
| 173 |
+
alpha = (alpha * 255).clip(0, 255).astype(np.uint8)
|
| 174 |
+
|
| 175 |
+
# Resize if needed
|
| 176 |
+
if alpha.shape != (h, w):
|
| 177 |
+
alpha = cv2.resize(alpha, (w, h), interpolation=cv2.INTER_LINEAR)
|
| 178 |
+
|
| 179 |
+
return _process_mask(alpha)
|
| 180 |
+
|
| 181 |
+
except Exception as e:
|
| 182 |
+
log.error(f"MatAnyone processing error: {str(e)}")
|
| 183 |
+
raise MaskRefinementError(f"MatAnyone processing failed: {str(e)}")
|
| 184 |
|
| 185 |
# ============================================================================
|
| 186 |
# CLASSICAL REFINEMENT
|