Update video_processor.py
Browse files- video_processor.py +599 -58
video_processor.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
"""
|
| 2 |
-
Core Video Processing Module
|
| 3 |
-
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
import os
|
|
@@ -9,7 +10,7 @@
|
|
| 9 |
import time
|
| 10 |
import logging
|
| 11 |
import threading
|
| 12 |
-
from typing import Optional, Tuple, Dict, Any, Callable
|
| 13 |
from pathlib import Path
|
| 14 |
|
| 15 |
# Import modular components
|
|
@@ -28,11 +29,21 @@
|
|
| 28 |
validate_video_file
|
| 29 |
)
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
logger = logging.getLogger(__name__)
|
| 32 |
|
| 33 |
class CoreVideoProcessor:
|
| 34 |
"""
|
| 35 |
-
Core video processing pipeline
|
| 36 |
"""
|
| 37 |
|
| 38 |
def __init__(self, sam2_predictor: Any, matanyone_model: Any,
|
|
@@ -47,6 +58,12 @@ def __init__(self, sam2_predictor: Any, matanyone_model: Any,
|
|
| 47 |
self.last_refined_mask = None
|
| 48 |
self.frame_cache = {}
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
# Statistics
|
| 51 |
self.stats = {
|
| 52 |
'videos_processed': 0,
|
|
@@ -57,7 +74,10 @@ def __init__(self, sam2_predictor: Any, matanyone_model: Any,
|
|
| 57 |
'successful_frames': 0,
|
| 58 |
'cache_hits': 0,
|
| 59 |
'segmentation_errors': 0,
|
| 60 |
-
'refinement_errors': 0
|
|
|
|
|
|
|
|
|
|
| 61 |
}
|
| 62 |
|
| 63 |
# Quality settings based on config
|
|
@@ -66,6 +86,11 @@ def __init__(self, sam2_predictor: Any, matanyone_model: Any,
|
|
| 66 |
logger.info("CoreVideoProcessor initialized")
|
| 67 |
logger.info(f"Quality preset: {config.quality_preset}")
|
| 68 |
logger.info(f"Quality settings: {self.quality_settings}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
def process_video(
|
| 71 |
self,
|
|
@@ -78,19 +103,7 @@ def process_video(
|
|
| 78 |
preview_greenscreen: bool = False
|
| 79 |
) -> Tuple[Optional[str], str]:
|
| 80 |
"""
|
| 81 |
-
Process video with
|
| 82 |
-
|
| 83 |
-
Args:
|
| 84 |
-
video_path: Input video path
|
| 85 |
-
background_choice: Background type or name
|
| 86 |
-
custom_background_path: Path to custom background (if applicable)
|
| 87 |
-
progress_callback: Progress update callback
|
| 88 |
-
cancel_event: Event to cancel processing
|
| 89 |
-
preview_mask: Generate mask preview instead of final output
|
| 90 |
-
preview_greenscreen: Generate greenscreen preview
|
| 91 |
-
|
| 92 |
-
Returns:
|
| 93 |
-
Tuple of (output_path, status_message)
|
| 94 |
"""
|
| 95 |
if self.processing_active:
|
| 96 |
return None, "Processing already in progress"
|
|
@@ -98,6 +111,9 @@ def process_video(
|
|
| 98 |
self.processing_active = True
|
| 99 |
start_time = time.time()
|
| 100 |
|
|
|
|
|
|
|
|
|
|
| 101 |
try:
|
| 102 |
# Validate input video
|
| 103 |
is_valid, validation_msg = validate_video_file(video_path)
|
|
@@ -140,8 +156,8 @@ def process_video(
|
|
| 140 |
cap.release()
|
| 141 |
return None, "Could not create output video writer"
|
| 142 |
|
| 143 |
-
# Process video frames
|
| 144 |
-
result = self.
|
| 145 |
cap, out, background, video_info,
|
| 146 |
progress_callback, cancel_event,
|
| 147 |
preview_mask, preview_greenscreen
|
|
@@ -161,6 +177,8 @@ def process_video(
|
|
| 161 |
f"Processed: {result['successful_frames']}/{result['total_frames']} frames\n"
|
| 162 |
f"Time: {processing_time:.1f}s\n"
|
| 163 |
f"Average FPS: {result['total_frames'] / processing_time:.1f}\n"
|
|
|
|
|
|
|
| 164 |
f"Background: {background_choice}"
|
| 165 |
)
|
| 166 |
|
|
@@ -180,6 +198,17 @@ def process_video(
|
|
| 180 |
finally:
|
| 181 |
self.processing_active = False
|
| 182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
def _get_video_info(self, cap: cv2.VideoCapture) -> Dict[str, Any]:
|
| 184 |
"""Extract comprehensive video information"""
|
| 185 |
return {
|
|
@@ -232,7 +261,7 @@ def _create_video_writer(self, output_path: str,
|
|
| 232 |
logger.error(f"Error creating video writer: {e}")
|
| 233 |
return None
|
| 234 |
|
| 235 |
-
def
|
| 236 |
self,
|
| 237 |
cap: cv2.VideoCapture,
|
| 238 |
out: cv2.VideoWriter,
|
|
@@ -243,7 +272,7 @@ def _process_video_frames(
|
|
| 243 |
preview_mask: bool,
|
| 244 |
preview_greenscreen: bool
|
| 245 |
) -> Dict[str, Any]:
|
| 246 |
-
"""Process all video frames"""
|
| 247 |
|
| 248 |
# Initialize progress tracking
|
| 249 |
prog_tracker = progress_tracker.ProgressTracker(
|
|
@@ -256,12 +285,11 @@ def _process_video_frames(
|
|
| 256 |
successful_frames = 0
|
| 257 |
failed_frames = 0
|
| 258 |
|
| 259 |
-
# Reset
|
| 260 |
-
self.
|
| 261 |
-
self.frame_cache.clear()
|
| 262 |
|
| 263 |
try:
|
| 264 |
-
prog_tracker.set_stage("Processing frames")
|
| 265 |
|
| 266 |
while True:
|
| 267 |
# Check for cancellation
|
|
@@ -281,13 +309,19 @@ def _process_video_frames(
|
|
| 281 |
|
| 282 |
try:
|
| 283 |
# Update progress
|
| 284 |
-
prog_tracker.update(frame_count, "Processing frame")
|
| 285 |
|
| 286 |
-
# Process frame
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
# Write processed frame
|
| 293 |
out.write(processed_frame)
|
|
@@ -337,7 +371,7 @@ def _process_video_frames(
|
|
| 337 |
'failed_frames': failed_frames
|
| 338 |
}
|
| 339 |
|
| 340 |
-
def
|
| 341 |
self,
|
| 342 |
frame: np.ndarray,
|
| 343 |
background: np.ndarray,
|
|
@@ -345,7 +379,459 @@ def _process_single_frame(
|
|
| 345 |
preview_mask: bool,
|
| 346 |
preview_greenscreen: bool
|
| 347 |
) -> np.ndarray:
|
| 348 |
-
"""Process a single video frame"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 349 |
|
| 350 |
try:
|
| 351 |
# Person segmentation
|
|
@@ -353,15 +839,15 @@ def _process_single_frame(
|
|
| 353 |
|
| 354 |
# Mask refinement (keyframe-based for performance)
|
| 355 |
if self._should_refine_mask(frame_number):
|
| 356 |
-
refined_mask = self.
|
| 357 |
self.last_refined_mask = refined_mask.copy()
|
| 358 |
else:
|
| 359 |
# Use temporal consistency with previous refined mask
|
| 360 |
-
refined_mask = self.
|
| 361 |
|
| 362 |
# Generate output based on mode
|
| 363 |
if preview_mask:
|
| 364 |
-
return self.
|
| 365 |
elif preview_greenscreen:
|
| 366 |
return self._create_greenscreen_preview(frame, refined_mask)
|
| 367 |
else:
|
|
@@ -379,12 +865,35 @@ def _segment_person(self, frame: np.ndarray, frame_number: int) -> np.ndarray:
|
|
| 379 |
if mask is None or mask.size == 0:
|
| 380 |
raise exceptions.SegmentationError(frame_number, "Segmentation returned empty mask")
|
| 381 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
return mask
|
| 383 |
|
| 384 |
except Exception as e:
|
| 385 |
self.stats['segmentation_errors'] += 1
|
| 386 |
raise exceptions.SegmentationError(frame_number, f"Segmentation failed: {str(e)}")
|
| 387 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
def _should_refine_mask(self, frame_number: int) -> bool:
|
| 389 |
"""Determine if mask should be refined for this frame"""
|
| 390 |
# Refine on keyframes or if no previous refined mask exists
|
|
@@ -394,8 +903,8 @@ def _should_refine_mask(self, frame_number: int) -> bool:
|
|
| 394 |
not self.quality_settings.get('temporal_consistency', True)
|
| 395 |
)
|
| 396 |
|
| 397 |
-
def
|
| 398 |
-
"""Refine mask using MatAnyone or fallback methods"""
|
| 399 |
try:
|
| 400 |
if self.matanyone_model is not None and self.quality_settings.get('edge_refinement', True):
|
| 401 |
refined_mask = refine_mask_hq(frame, mask, self.matanyone_model)
|
|
@@ -412,7 +921,7 @@ def _refine_mask(self, frame: np.ndarray, mask: np.ndarray, frame_number: int) -
|
|
| 412 |
return mask
|
| 413 |
|
| 414 |
def _fallback_mask_refinement(self, mask: np.ndarray) -> np.ndarray:
|
| 415 |
-
"""Fallback mask refinement using basic OpenCV operations"""
|
| 416 |
try:
|
| 417 |
# Morphological operations to clean up mask
|
| 418 |
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
|
|
@@ -428,8 +937,29 @@ def _fallback_mask_refinement(self, mask: np.ndarray) -> np.ndarray:
|
|
| 428 |
logger.warning(f"Fallback mask refinement failed: {e}")
|
| 429 |
return mask
|
| 430 |
|
| 431 |
-
def
|
| 432 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 433 |
if self.last_refined_mask is None or not self.quality_settings.get('temporal_consistency', True):
|
| 434 |
return current_mask
|
| 435 |
|
|
@@ -457,8 +987,8 @@ def _apply_temporal_consistency(self, current_mask: np.ndarray, frame_number: in
|
|
| 457 |
logger.warning(f"Temporal consistency application failed: {e}")
|
| 458 |
return current_mask
|
| 459 |
|
| 460 |
-
def
|
| 461 |
-
"""Create mask visualization preview"""
|
| 462 |
try:
|
| 463 |
# Create colored mask overlay
|
| 464 |
mask_colored = np.zeros_like(frame)
|
|
@@ -510,18 +1040,7 @@ def prepare_background(
|
|
| 510 |
width: int,
|
| 511 |
height: int
|
| 512 |
) -> Optional[np.ndarray]:
|
| 513 |
-
"""
|
| 514 |
-
Prepare background image for processing
|
| 515 |
-
|
| 516 |
-
Args:
|
| 517 |
-
background_choice: Background type or name
|
| 518 |
-
custom_background_path: Path to custom background
|
| 519 |
-
width: Target width
|
| 520 |
-
height: Target height
|
| 521 |
-
|
| 522 |
-
Returns:
|
| 523 |
-
Prepared background image or None if failed
|
| 524 |
-
"""
|
| 525 |
try:
|
| 526 |
if background_choice == "custom" and custom_background_path:
|
| 527 |
if not os.path.exists(custom_background_path):
|
|
@@ -576,7 +1095,7 @@ def _update_processing_stats(self, video_info: Dict[str, Any],
|
|
| 576 |
|
| 577 |
def get_processing_capabilities(self) -> Dict[str, Any]:
|
| 578 |
"""Get current processing capabilities"""
|
| 579 |
-
|
| 580 |
'sam2_available': self.sam2_predictor is not None,
|
| 581 |
'matanyone_available': self.matanyone_model is not None,
|
| 582 |
'quality_preset': self.config.quality_preset,
|
|
@@ -587,10 +1106,21 @@ def get_processing_capabilities(self) -> Dict[str, Any]:
|
|
| 587 |
'supported_formats': ['.mp4', '.avi', '.mov', '.mkv'],
|
| 588 |
'memory_limit_gb': self.memory_manager.memory_limit_gb
|
| 589 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 590 |
|
| 591 |
def get_status(self) -> Dict[str, Any]:
|
| 592 |
"""Get current processor status"""
|
| 593 |
-
|
| 594 |
'processing_active': self.processing_active,
|
| 595 |
'models_available': {
|
| 596 |
'sam2': self.sam2_predictor is not None,
|
|
@@ -602,6 +1132,16 @@ def get_status(self) -> Dict[str, Any]:
|
|
| 602 |
'memory_usage': self.memory_manager.get_memory_usage(),
|
| 603 |
'capabilities': self.get_processing_capabilities()
|
| 604 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 605 |
|
| 606 |
def optimize_for_video(self, video_info: Dict[str, Any]) -> Dict[str, Any]:
|
| 607 |
"""Optimize settings for specific video characteristics"""
|
|
@@ -656,6 +1196,7 @@ def reset_cache(self):
|
|
| 656 |
self.frame_cache.clear()
|
| 657 |
self.last_refined_mask = None
|
| 658 |
self.stats['cache_hits'] = 0
|
|
|
|
| 659 |
logger.debug("Frame cache and temporal state reset")
|
| 660 |
|
| 661 |
def cleanup(self):
|
|
|
|
| 1 |
"""
|
| 2 |
+
Core Video Processing Module - Enhanced with Temporal Consistency
|
| 3 |
+
VERSION: 2.0-temporal-enhanced
|
| 4 |
+
ROLLBACK: Set USE_TEMPORAL_ENHANCEMENT = False to revert to original behavior
|
| 5 |
"""
|
| 6 |
|
| 7 |
import os
|
|
|
|
| 10 |
import time
|
| 11 |
import logging
|
| 12 |
import threading
|
| 13 |
+
from typing import Optional, Tuple, Dict, Any, Callable, List
|
| 14 |
from pathlib import Path
|
| 15 |
|
| 16 |
# Import modular components
|
|
|
|
| 29 |
validate_video_file
|
| 30 |
)
|
| 31 |
|
| 32 |
+
# ============================================================================
|
| 33 |
+
# VERSION CONTROL AND FEATURE FLAGS - EASY ROLLBACK
|
| 34 |
+
# ============================================================================
|
| 35 |
+
|
| 36 |
+
# ROLLBACK CONTROL: Set to False to use original functions
|
| 37 |
+
USE_TEMPORAL_ENHANCEMENT = True
|
| 38 |
+
USE_HAIR_DETECTION = True
|
| 39 |
+
USE_OPTICAL_FLOW_TRACKING = True
|
| 40 |
+
USE_ADAPTIVE_REFINEMENT = True
|
| 41 |
+
|
| 42 |
logger = logging.getLogger(__name__)
|
| 43 |
|
| 44 |
class CoreVideoProcessor:
|
| 45 |
"""
|
| 46 |
+
ENHANCED: Core video processing pipeline with temporal consistency and fine-detail handling
|
| 47 |
"""
|
| 48 |
|
| 49 |
def __init__(self, sam2_predictor: Any, matanyone_model: Any,
|
|
|
|
| 58 |
self.last_refined_mask = None
|
| 59 |
self.frame_cache = {}
|
| 60 |
|
| 61 |
+
# ENHANCED: Temporal consistency state
|
| 62 |
+
self.mask_history = [] # Store recent masks for temporal smoothing
|
| 63 |
+
self.optical_flow_data = None # Previous frame for optical flow
|
| 64 |
+
self.hair_regions_cache = {} # Cache detected hair regions
|
| 65 |
+
self.quality_scores_history = [] # Track quality over time
|
| 66 |
+
|
| 67 |
# Statistics
|
| 68 |
self.stats = {
|
| 69 |
'videos_processed': 0,
|
|
|
|
| 74 |
'successful_frames': 0,
|
| 75 |
'cache_hits': 0,
|
| 76 |
'segmentation_errors': 0,
|
| 77 |
+
'refinement_errors': 0,
|
| 78 |
+
'temporal_corrections': 0, # NEW: Track temporal fixes
|
| 79 |
+
'hair_detections': 0, # NEW: Track hair detection success
|
| 80 |
+
'flow_tracking_failures': 0 # NEW: Track optical flow issues
|
| 81 |
}
|
| 82 |
|
| 83 |
# Quality settings based on config
|
|
|
|
| 86 |
logger.info("CoreVideoProcessor initialized")
|
| 87 |
logger.info(f"Quality preset: {config.quality_preset}")
|
| 88 |
logger.info(f"Quality settings: {self.quality_settings}")
|
| 89 |
+
|
| 90 |
+
if USE_TEMPORAL_ENHANCEMENT:
|
| 91 |
+
logger.info("ENHANCED: Temporal consistency enabled")
|
| 92 |
+
if USE_HAIR_DETECTION:
|
| 93 |
+
logger.info("ENHANCED: Hair detection enabled")
|
| 94 |
|
| 95 |
def process_video(
|
| 96 |
self,
|
|
|
|
| 103 |
preview_greenscreen: bool = False
|
| 104 |
) -> Tuple[Optional[str], str]:
|
| 105 |
"""
|
| 106 |
+
ENHANCED: Process video with temporal consistency and fine-detail handling
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
"""
|
| 108 |
if self.processing_active:
|
| 109 |
return None, "Processing already in progress"
|
|
|
|
| 111 |
self.processing_active = True
|
| 112 |
start_time = time.time()
|
| 113 |
|
| 114 |
+
# ENHANCED: Reset temporal state for new video
|
| 115 |
+
self._reset_temporal_state()
|
| 116 |
+
|
| 117 |
try:
|
| 118 |
# Validate input video
|
| 119 |
is_valid, validation_msg = validate_video_file(video_path)
|
|
|
|
| 156 |
cap.release()
|
| 157 |
return None, "Could not create output video writer"
|
| 158 |
|
| 159 |
+
# ENHANCED: Process video frames with temporal consistency
|
| 160 |
+
result = self._process_video_frames_enhanced(
|
| 161 |
cap, out, background, video_info,
|
| 162 |
progress_callback, cancel_event,
|
| 163 |
preview_mask, preview_greenscreen
|
|
|
|
| 177 |
f"Processed: {result['successful_frames']}/{result['total_frames']} frames\n"
|
| 178 |
f"Time: {processing_time:.1f}s\n"
|
| 179 |
f"Average FPS: {result['total_frames'] / processing_time:.1f}\n"
|
| 180 |
+
f"Temporal corrections: {self.stats['temporal_corrections']}\n"
|
| 181 |
+
f"Hair detections: {self.stats['hair_detections']}\n"
|
| 182 |
f"Background: {background_choice}"
|
| 183 |
)
|
| 184 |
|
|
|
|
| 198 |
finally:
|
| 199 |
self.processing_active = False
|
| 200 |
|
| 201 |
+
def _reset_temporal_state(self):
|
| 202 |
+
"""ENHANCED: Reset temporal consistency state"""
|
| 203 |
+
self.mask_history.clear()
|
| 204 |
+
self.optical_flow_data = None
|
| 205 |
+
self.hair_regions_cache.clear()
|
| 206 |
+
self.quality_scores_history.clear()
|
| 207 |
+
self.last_refined_mask = None
|
| 208 |
+
self.stats['temporal_corrections'] = 0
|
| 209 |
+
self.stats['hair_detections'] = 0
|
| 210 |
+
self.stats['flow_tracking_failures'] = 0
|
| 211 |
+
|
| 212 |
def _get_video_info(self, cap: cv2.VideoCapture) -> Dict[str, Any]:
|
| 213 |
"""Extract comprehensive video information"""
|
| 214 |
return {
|
|
|
|
| 261 |
logger.error(f"Error creating video writer: {e}")
|
| 262 |
return None
|
| 263 |
|
| 264 |
+
def _process_video_frames_enhanced(
|
| 265 |
self,
|
| 266 |
cap: cv2.VideoCapture,
|
| 267 |
out: cv2.VideoWriter,
|
|
|
|
| 272 |
preview_mask: bool,
|
| 273 |
preview_greenscreen: bool
|
| 274 |
) -> Dict[str, Any]:
|
| 275 |
+
"""ENHANCED: Process all video frames with temporal consistency"""
|
| 276 |
|
| 277 |
# Initialize progress tracking
|
| 278 |
prog_tracker = progress_tracker.ProgressTracker(
|
|
|
|
| 285 |
successful_frames = 0
|
| 286 |
failed_frames = 0
|
| 287 |
|
| 288 |
+
# Reset enhanced state
|
| 289 |
+
self._reset_temporal_state()
|
|
|
|
| 290 |
|
| 291 |
try:
|
| 292 |
+
prog_tracker.set_stage("Processing frames with temporal enhancement")
|
| 293 |
|
| 294 |
while True:
|
| 295 |
# Check for cancellation
|
|
|
|
| 309 |
|
| 310 |
try:
|
| 311 |
# Update progress
|
| 312 |
+
prog_tracker.update(frame_count, "Processing frame with temporal consistency")
|
| 313 |
|
| 314 |
+
# ENHANCED: Process frame with temporal consistency
|
| 315 |
+
if USE_TEMPORAL_ENHANCEMENT:
|
| 316 |
+
processed_frame = self._process_single_frame_enhanced(
|
| 317 |
+
frame, background, frame_count,
|
| 318 |
+
preview_mask, preview_greenscreen
|
| 319 |
+
)
|
| 320 |
+
else:
|
| 321 |
+
processed_frame = self._process_single_frame_original(
|
| 322 |
+
frame, background, frame_count,
|
| 323 |
+
preview_mask, preview_greenscreen
|
| 324 |
+
)
|
| 325 |
|
| 326 |
# Write processed frame
|
| 327 |
out.write(processed_frame)
|
|
|
|
| 371 |
'failed_frames': failed_frames
|
| 372 |
}
|
| 373 |
|
| 374 |
+
def _process_single_frame_enhanced(
|
| 375 |
self,
|
| 376 |
frame: np.ndarray,
|
| 377 |
background: np.ndarray,
|
|
|
|
| 379 |
preview_mask: bool,
|
| 380 |
preview_greenscreen: bool
|
| 381 |
) -> np.ndarray:
|
| 382 |
+
"""ENHANCED: Process a single video frame with temporal consistency"""
|
| 383 |
+
|
| 384 |
+
try:
|
| 385 |
+
# Person segmentation
|
| 386 |
+
mask = self._segment_person_enhanced(frame, frame_number)
|
| 387 |
+
|
| 388 |
+
# ENHANCED: Detect hair and fine details
|
| 389 |
+
if USE_HAIR_DETECTION:
|
| 390 |
+
hair_regions = self._detect_hair_regions(frame, mask, frame_number)
|
| 391 |
+
else:
|
| 392 |
+
hair_regions = None
|
| 393 |
+
|
| 394 |
+
# ENHANCED: Apply temporal consistency
|
| 395 |
+
if USE_TEMPORAL_ENHANCEMENT and len(self.mask_history) > 0:
|
| 396 |
+
mask = self._apply_temporal_consistency_enhanced(frame, mask, frame_number)
|
| 397 |
+
|
| 398 |
+
# ENHANCED: Adaptive mask refinement based on frame content
|
| 399 |
+
if USE_ADAPTIVE_REFINEMENT:
|
| 400 |
+
refined_mask = self._adaptive_mask_refinement(frame, mask, frame_number, hair_regions)
|
| 401 |
+
else:
|
| 402 |
+
refined_mask = self._refine_mask_original(frame, mask, frame_number)
|
| 403 |
+
|
| 404 |
+
# Store mask in history for temporal consistency
|
| 405 |
+
self._update_mask_history(refined_mask)
|
| 406 |
+
|
| 407 |
+
# Generate output based on mode
|
| 408 |
+
if preview_mask:
|
| 409 |
+
return self._create_mask_preview_enhanced(frame, refined_mask, hair_regions)
|
| 410 |
+
elif preview_greenscreen:
|
| 411 |
+
return self._create_greenscreen_preview(frame, refined_mask)
|
| 412 |
+
else:
|
| 413 |
+
return self._replace_background_enhanced(frame, refined_mask, background, hair_regions)
|
| 414 |
+
|
| 415 |
+
except Exception as e:
|
| 416 |
+
logger.warning(f"Enhanced single frame processing failed: {e}")
|
| 417 |
+
# Fallback to original processing
|
| 418 |
+
return self._process_single_frame_original(frame, background, frame_number, preview_mask, preview_greenscreen)
|
| 419 |
+
|
| 420 |
+
def _detect_hair_regions(self, frame: np.ndarray, mask: np.ndarray, frame_number: int) -> Optional[np.ndarray]:
|
| 421 |
+
"""ENHANCED: Detect hair and fine detail regions automatically"""
|
| 422 |
+
try:
|
| 423 |
+
# Check cache first
|
| 424 |
+
if frame_number in self.hair_regions_cache:
|
| 425 |
+
self.stats['cache_hits'] += 1
|
| 426 |
+
return self.hair_regions_cache[frame_number]
|
| 427 |
+
|
| 428 |
+
# Convert frame to different color spaces for better hair detection
|
| 429 |
+
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
| 430 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 431 |
+
|
| 432 |
+
# Method 1: Texture-based hair detection
|
| 433 |
+
# Hair typically has high frequency texture
|
| 434 |
+
laplacian = cv2.Laplacian(gray, cv2.CV_64F)
|
| 435 |
+
texture_strength = np.abs(laplacian)
|
| 436 |
+
|
| 437 |
+
# Method 2: Color-based hair detection
|
| 438 |
+
# Hair is typically in darker hue ranges
|
| 439 |
+
hair_hue_mask = ((hsv[:,:,0] >= 0) & (hsv[:,:,0] <= 30)) | \
|
| 440 |
+
((hsv[:,:,0] >= 150) & (hsv[:,:,0] <= 180))
|
| 441 |
+
hair_value_mask = hsv[:,:,2] < 100 # Darker regions
|
| 442 |
+
|
| 443 |
+
# Combine texture and color information
|
| 444 |
+
hair_probability = np.zeros_like(gray, dtype=np.float32)
|
| 445 |
+
|
| 446 |
+
# High texture regions
|
| 447 |
+
texture_norm = (texture_strength - texture_strength.min()) / (texture_strength.max() - texture_strength.min() + 1e-8)
|
| 448 |
+
hair_probability += texture_norm * 0.6
|
| 449 |
+
|
| 450 |
+
# Color-based probability
|
| 451 |
+
color_prob = (hair_hue_mask.astype(np.float32) * hair_value_mask.astype(np.float32))
|
| 452 |
+
hair_probability += color_prob * 0.4
|
| 453 |
+
|
| 454 |
+
# Only consider regions near the mask boundary (where hair typically is)
|
| 455 |
+
mask_boundary = self._get_mask_boundary_region(mask, boundary_width=20)
|
| 456 |
+
hair_probability *= mask_boundary
|
| 457 |
+
|
| 458 |
+
# Threshold to get hair regions
|
| 459 |
+
hair_threshold = np.percentile(hair_probability[hair_probability > 0], 75)
|
| 460 |
+
hair_regions = (hair_probability > hair_threshold).astype(np.uint8)
|
| 461 |
+
|
| 462 |
+
# Clean up hair regions
|
| 463 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
|
| 464 |
+
hair_regions = cv2.morphologyEx(hair_regions, cv2.MORPH_CLOSE, kernel)
|
| 465 |
+
|
| 466 |
+
# Cache the result
|
| 467 |
+
self.hair_regions_cache[frame_number] = hair_regions
|
| 468 |
+
|
| 469 |
+
# Update stats if hair was detected
|
| 470 |
+
if np.any(hair_regions):
|
| 471 |
+
self.stats['hair_detections'] += 1
|
| 472 |
+
logger.debug(f"Hair regions detected in frame {frame_number}")
|
| 473 |
+
|
| 474 |
+
return hair_regions
|
| 475 |
+
|
| 476 |
+
except Exception as e:
|
| 477 |
+
logger.warning(f"Hair detection failed for frame {frame_number}: {e}")
|
| 478 |
+
return None
|
| 479 |
+
|
| 480 |
+
def _get_mask_boundary_region(self, mask: np.ndarray, boundary_width: int = 20) -> np.ndarray:
|
| 481 |
+
"""Get region around mask boundary where hair/fine details are likely"""
|
| 482 |
+
try:
|
| 483 |
+
# Create dilated and eroded versions of mask
|
| 484 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (boundary_width, boundary_width))
|
| 485 |
+
dilated = cv2.dilate(mask, kernel, iterations=1)
|
| 486 |
+
eroded = cv2.erode(mask, kernel, iterations=1)
|
| 487 |
+
|
| 488 |
+
# Boundary region is dilated minus eroded
|
| 489 |
+
boundary_region = ((dilated > 0) & (eroded == 0)).astype(np.float32)
|
| 490 |
+
|
| 491 |
+
return boundary_region
|
| 492 |
+
|
| 493 |
+
except Exception as e:
|
| 494 |
+
logger.warning(f"Boundary region detection failed: {e}")
|
| 495 |
+
return np.ones_like(mask, dtype=np.float32)
|
| 496 |
+
|
| 497 |
+
def _apply_temporal_consistency_enhanced(self, frame: np.ndarray, current_mask: np.ndarray, frame_number: int) -> np.ndarray:
|
| 498 |
+
"""ENHANCED: Apply temporal consistency using optical flow and history"""
|
| 499 |
+
try:
|
| 500 |
+
if len(self.mask_history) == 0:
|
| 501 |
+
return current_mask
|
| 502 |
+
|
| 503 |
+
previous_mask = self.mask_history[-1]
|
| 504 |
+
|
| 505 |
+
# Method 1: Optical flow-based consistency
|
| 506 |
+
if USE_OPTICAL_FLOW_TRACKING and self.optical_flow_data is not None:
|
| 507 |
+
try:
|
| 508 |
+
flow_corrected_mask = self._apply_optical_flow_consistency(
|
| 509 |
+
frame, current_mask, previous_mask
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
# Blend flow-corrected with current mask
|
| 513 |
+
alpha = 0.7 # Weight for current mask
|
| 514 |
+
beta = 0.3 # Weight for flow-corrected mask
|
| 515 |
+
|
| 516 |
+
blended_mask = cv2.addWeighted(
|
| 517 |
+
current_mask.astype(np.float32), alpha,
|
| 518 |
+
flow_corrected_mask.astype(np.float32), beta, 0
|
| 519 |
+
).astype(np.uint8)
|
| 520 |
+
|
| 521 |
+
self.stats['temporal_corrections'] += 1
|
| 522 |
+
|
| 523 |
+
except Exception as e:
|
| 524 |
+
logger.debug(f"Optical flow consistency failed: {e}")
|
| 525 |
+
self.stats['flow_tracking_failures'] += 1
|
| 526 |
+
blended_mask = current_mask
|
| 527 |
+
else:
|
| 528 |
+
blended_mask = current_mask
|
| 529 |
+
|
| 530 |
+
# Method 2: Multi-frame temporal smoothing
|
| 531 |
+
if len(self.mask_history) >= 3:
|
| 532 |
+
# Use weighted average of recent masks
|
| 533 |
+
weights = [0.5, 0.3, 0.2] # Current, previous, before previous
|
| 534 |
+
masks_to_blend = [blended_mask] + self.mask_history[-2:]
|
| 535 |
+
|
| 536 |
+
temporal_mask = np.zeros_like(blended_mask, dtype=np.float32)
|
| 537 |
+
for mask, weight in zip(masks_to_blend, weights):
|
| 538 |
+
temporal_mask += mask.astype(np.float32) * weight
|
| 539 |
+
|
| 540 |
+
blended_mask = np.clip(temporal_mask, 0, 255).astype(np.uint8)
|
| 541 |
+
|
| 542 |
+
# Method 3: Edge-aware temporal filtering
|
| 543 |
+
blended_mask = self._temporal_edge_filtering(frame, blended_mask, current_mask)
|
| 544 |
+
|
| 545 |
+
return blended_mask
|
| 546 |
+
|
| 547 |
+
except Exception as e:
|
| 548 |
+
logger.warning(f"Temporal consistency failed: {e}")
|
| 549 |
+
return current_mask
|
| 550 |
+
|
| 551 |
+
def _apply_optical_flow_consistency(self, current_frame: np.ndarray,
|
| 552 |
+
current_mask: np.ndarray, previous_mask: np.ndarray) -> np.ndarray:
|
| 553 |
+
"""Apply optical flow to warp previous mask to current frame"""
|
| 554 |
+
try:
|
| 555 |
+
# Convert frames to grayscale for optical flow
|
| 556 |
+
current_gray = cv2.cvtColor(current_frame, cv2.COLOR_BGR2GRAY)
|
| 557 |
+
previous_gray = self.optical_flow_data
|
| 558 |
+
|
| 559 |
+
# Calculate dense optical flow
|
| 560 |
+
flow = cv2.calcOpticalFlowPyrLK(previous_gray, current_gray, None, None)
|
| 561 |
+
|
| 562 |
+
# Warp previous mask using optical flow
|
| 563 |
+
h, w = previous_mask.shape
|
| 564 |
+
flow_map = np.zeros((h, w, 2), dtype=np.float32)
|
| 565 |
+
|
| 566 |
+
# Create flow field
|
| 567 |
+
y_coords, x_coords = np.mgrid[0:h, 0:w]
|
| 568 |
+
flow_map[:, :, 0] = x_coords + flow[0] if flow[0] is not None else x_coords
|
| 569 |
+
flow_map[:, :, 1] = y_coords + flow[1] if flow[1] is not None else y_coords
|
| 570 |
+
|
| 571 |
+
# Warp previous mask
|
| 572 |
+
warped_mask = cv2.remap(previous_mask, flow_map, None, cv2.INTER_LINEAR)
|
| 573 |
+
|
| 574 |
+
return warped_mask
|
| 575 |
+
|
| 576 |
+
except Exception as e:
|
| 577 |
+
logger.debug(f"Optical flow warping failed: {e}")
|
| 578 |
+
return previous_mask
|
| 579 |
+
|
| 580 |
+
def _temporal_edge_filtering(self, frame: np.ndarray, blended_mask: np.ndarray, current_mask: np.ndarray) -> np.ndarray:
|
| 581 |
+
"""Apply edge-aware temporal filtering"""
|
| 582 |
+
try:
|
| 583 |
+
# Detect edges in current frame
|
| 584 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 585 |
+
edges = cv2.Canny(gray, 50, 150)
|
| 586 |
+
|
| 587 |
+
# In edge regions, favor the current mask (more responsive)
|
| 588 |
+
# In smooth regions, favor the blended mask (more stable)
|
| 589 |
+
edge_weight = cv2.GaussianBlur(edges.astype(np.float32), (5, 5), 1.0) / 255.0
|
| 590 |
+
|
| 591 |
+
filtered_mask = (current_mask.astype(np.float32) * edge_weight +
|
| 592 |
+
blended_mask.astype(np.float32) * (1 - edge_weight))
|
| 593 |
+
|
| 594 |
+
return np.clip(filtered_mask, 0, 255).astype(np.uint8)
|
| 595 |
+
|
| 596 |
+
except Exception as e:
|
| 597 |
+
logger.warning(f"Temporal edge filtering failed: {e}")
|
| 598 |
+
return blended_mask
|
| 599 |
+
|
| 600 |
+
def _adaptive_mask_refinement(self, frame: np.ndarray, mask: np.ndarray,
|
| 601 |
+
frame_number: int, hair_regions: Optional[np.ndarray]) -> np.ndarray:
|
| 602 |
+
"""ENHANCED: Adaptive mask refinement based on content analysis"""
|
| 603 |
+
try:
|
| 604 |
+
# Determine refinement strategy based on frame content
|
| 605 |
+
refinement_needed = self._assess_refinement_needs(frame, mask, hair_regions)
|
| 606 |
+
|
| 607 |
+
if refinement_needed['hair_refinement'] and hair_regions is not None:
|
| 608 |
+
# Special handling for hair regions
|
| 609 |
+
mask = self._refine_hair_regions(frame, mask, hair_regions)
|
| 610 |
+
|
| 611 |
+
if refinement_needed['edge_refinement']:
|
| 612 |
+
# Enhanced edge refinement
|
| 613 |
+
mask = self._enhanced_edge_refinement(frame, mask)
|
| 614 |
+
|
| 615 |
+
if refinement_needed['temporal_refinement']:
|
| 616 |
+
# Apply temporal-aware refinement
|
| 617 |
+
mask = self._temporal_aware_refinement(frame, mask, frame_number)
|
| 618 |
+
|
| 619 |
+
# Standard refinement if needed
|
| 620 |
+
if self._should_refine_mask(frame_number):
|
| 621 |
+
if self.matanyone_model is not None and self.quality_settings.get('edge_refinement', True):
|
| 622 |
+
mask = refine_mask_hq(frame, mask, self.matanyone_model)
|
| 623 |
+
else:
|
| 624 |
+
mask = self._fallback_mask_refinement_enhanced(mask)
|
| 625 |
+
|
| 626 |
+
return mask
|
| 627 |
+
|
| 628 |
+
except Exception as e:
|
| 629 |
+
logger.warning(f"Adaptive mask refinement failed: {e}")
|
| 630 |
+
return self._refine_mask_original(frame, mask, frame_number)
|
| 631 |
+
|
| 632 |
+
def _assess_refinement_needs(self, frame: np.ndarray, mask: np.ndarray,
|
| 633 |
+
hair_regions: Optional[np.ndarray]) -> Dict[str, bool]:
|
| 634 |
+
"""Assess what type of refinement is needed for this frame"""
|
| 635 |
+
try:
|
| 636 |
+
needs = {
|
| 637 |
+
'hair_refinement': False,
|
| 638 |
+
'edge_refinement': False,
|
| 639 |
+
'temporal_refinement': False
|
| 640 |
+
}
|
| 641 |
+
|
| 642 |
+
# Check if hair refinement is needed
|
| 643 |
+
if hair_regions is not None and np.any(hair_regions):
|
| 644 |
+
needs['hair_refinement'] = True
|
| 645 |
+
|
| 646 |
+
# Check edge quality
|
| 647 |
+
edges = cv2.Canny(mask, 50, 150)
|
| 648 |
+
edge_density = np.sum(edges > 0) / (mask.shape[0] * mask.shape[1])
|
| 649 |
+
if edge_density > 0.1: # High edge density suggests rough boundaries
|
| 650 |
+
needs['edge_refinement'] = True
|
| 651 |
+
|
| 652 |
+
# Check temporal consistency needs
|
| 653 |
+
if len(self.mask_history) > 0:
|
| 654 |
+
prev_mask = self.mask_history[-1]
|
| 655 |
+
diff = cv2.absdiff(mask, prev_mask)
|
| 656 |
+
change_ratio = np.sum(diff > 50) / (mask.shape[0] * mask.shape[1])
|
| 657 |
+
if change_ratio > 0.15: # High change suggests temporal inconsistency
|
| 658 |
+
needs['temporal_refinement'] = True
|
| 659 |
+
|
| 660 |
+
return needs
|
| 661 |
+
|
| 662 |
+
except Exception as e:
|
| 663 |
+
logger.warning(f"Refinement assessment failed: {e}")
|
| 664 |
+
return {'hair_refinement': False, 'edge_refinement': True, 'temporal_refinement': False}
|
| 665 |
+
|
| 666 |
+
def _refine_hair_regions(self, frame: np.ndarray, mask: np.ndarray, hair_regions: np.ndarray) -> np.ndarray:
|
| 667 |
+
"""Special refinement for hair and fine detail regions"""
|
| 668 |
+
try:
|
| 669 |
+
# Create a more aggressive mask for hair regions
|
| 670 |
+
hair_mask = hair_regions > 0
|
| 671 |
+
|
| 672 |
+
# Use different thresholding for hair areas
|
| 673 |
+
refined_mask = mask.copy()
|
| 674 |
+
|
| 675 |
+
# In hair regions, use lower threshold (include more pixels)
|
| 676 |
+
hair_area_values = mask[hair_mask]
|
| 677 |
+
if len(hair_area_values) > 0:
|
| 678 |
+
hair_threshold = max(100, np.percentile(hair_area_values, 25)) # Lower threshold for hair
|
| 679 |
+
refined_mask[hair_mask] = np.where(mask[hair_mask] > hair_threshold, 255, 0)
|
| 680 |
+
|
| 681 |
+
# Apply morphological closing to connect hair strands
|
| 682 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
|
| 683 |
+
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel)
|
| 684 |
+
|
| 685 |
+
return refined_mask
|
| 686 |
+
|
| 687 |
+
except Exception as e:
|
| 688 |
+
logger.warning(f"Hair region refinement failed: {e}")
|
| 689 |
+
return mask
|
| 690 |
+
|
| 691 |
+
def _enhanced_edge_refinement(self, frame: np.ndarray, mask: np.ndarray) -> np.ndarray:
|
| 692 |
+
"""Enhanced edge refinement using image gradients"""
|
| 693 |
+
try:
|
| 694 |
+
# Use bilateral filter to preserve edges while smoothing
|
| 695 |
+
refined = cv2.bilateralFilter(mask, 9, 75, 75)
|
| 696 |
+
|
| 697 |
+
# Edge-guided smoothing
|
| 698 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 699 |
+
edges = cv2.Canny(gray, 50, 150)
|
| 700 |
+
|
| 701 |
+
# In edge areas, preserve original mask more
|
| 702 |
+
edge_weight = cv2.GaussianBlur(edges.astype(np.float32), (3, 3), 1.0) / 255.0
|
| 703 |
+
edge_weight = np.clip(edge_weight * 2, 0, 1) # Amplify edge influence
|
| 704 |
+
|
| 705 |
+
final_mask = (mask.astype(np.float32) * edge_weight +
|
| 706 |
+
refined.astype(np.float32) * (1 - edge_weight))
|
| 707 |
+
|
| 708 |
+
return np.clip(final_mask, 0, 255).astype(np.uint8)
|
| 709 |
+
|
| 710 |
+
except Exception as e:
|
| 711 |
+
logger.warning(f"Enhanced edge refinement failed: {e}")
|
| 712 |
+
return mask
|
| 713 |
+
|
| 714 |
+
def _temporal_aware_refinement(self, frame: np.ndarray, mask: np.ndarray, frame_number: int) -> np.ndarray:
|
| 715 |
+
"""Temporal-aware refinement considering motion and stability"""
|
| 716 |
+
try:
|
| 717 |
+
if len(self.mask_history) == 0:
|
| 718 |
+
return mask
|
| 719 |
+
|
| 720 |
+
# Calculate motion between frames
|
| 721 |
+
if self.optical_flow_data is not None:
|
| 722 |
+
current_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 723 |
+
motion_magnitude = cv2.absdiff(current_gray, self.optical_flow_data)
|
| 724 |
+
motion_mask = motion_magnitude > 10 # Areas with motion
|
| 725 |
+
|
| 726 |
+
# In high-motion areas, trust current mask more
|
| 727 |
+
# In low-motion areas, use temporal smoothing
|
| 728 |
+
prev_mask = self.mask_history[-1]
|
| 729 |
+
|
| 730 |
+
motion_weight = cv2.GaussianBlur(motion_mask.astype(np.float32), (5, 5), 1.0)
|
| 731 |
+
motion_weight = np.clip(motion_weight, 0.3, 1.0) # Don't completely ignore temporal info
|
| 732 |
+
|
| 733 |
+
temporal_mask = (mask.astype(np.float32) * motion_weight +
|
| 734 |
+
prev_mask.astype(np.float32) * (1 - motion_weight))
|
| 735 |
+
|
| 736 |
+
return np.clip(temporal_mask, 0, 255).astype(np.uint8)
|
| 737 |
+
|
| 738 |
+
return mask
|
| 739 |
+
|
| 740 |
+
except Exception as e:
|
| 741 |
+
logger.warning(f"Temporal-aware refinement failed: {e}")
|
| 742 |
+
return mask
|
| 743 |
+
|
| 744 |
+
def _update_mask_history(self, mask: np.ndarray):
|
| 745 |
+
"""Update mask history for temporal consistency"""
|
| 746 |
+
self.mask_history.append(mask.copy())
|
| 747 |
+
|
| 748 |
+
# Keep only recent history (limit memory usage)
|
| 749 |
+
max_history = 5
|
| 750 |
+
if len(self.mask_history) > max_history:
|
| 751 |
+
self.mask_history.pop(0)
|
| 752 |
+
|
| 753 |
+
def _create_mask_preview_enhanced(self, frame: np.ndarray, mask: np.ndarray,
|
| 754 |
+
hair_regions: Optional[np.ndarray]) -> np.ndarray:
|
| 755 |
+
"""ENHANCED: Create mask visualization with hair regions highlighted"""
|
| 756 |
+
try:
|
| 757 |
+
# Create colored mask overlay
|
| 758 |
+
mask_colored = np.zeros_like(frame)
|
| 759 |
+
mask_colored[:, :, 1] = mask # Green channel for person
|
| 760 |
+
|
| 761 |
+
# Highlight hair regions in blue if available
|
| 762 |
+
if hair_regions is not None:
|
| 763 |
+
mask_colored[:, :, 2] = np.maximum(mask_colored[:, :, 2], hair_regions * 255)
|
| 764 |
+
|
| 765 |
+
# Blend with original frame
|
| 766 |
+
alpha = 0.6
|
| 767 |
+
preview = cv2.addWeighted(frame, 1-alpha, mask_colored, alpha, 0)
|
| 768 |
+
|
| 769 |
+
return preview
|
| 770 |
+
|
| 771 |
+
except Exception as e:
|
| 772 |
+
logger.warning(f"Enhanced mask preview creation failed: {e}")
|
| 773 |
+
return self._create_mask_preview_original(frame, mask)
|
| 774 |
+
|
| 775 |
+
def _replace_background_enhanced(self, frame: np.ndarray, mask: np.ndarray,
|
| 776 |
+
background: np.ndarray, hair_regions: Optional[np.ndarray]) -> np.ndarray:
|
| 777 |
+
"""ENHANCED: Replace background with special handling for hair regions"""
|
| 778 |
+
try:
|
| 779 |
+
# Standard background replacement
|
| 780 |
+
result = replace_background_hq(frame, mask, background)
|
| 781 |
+
|
| 782 |
+
# If hair regions detected, apply additional processing
|
| 783 |
+
if hair_regions is not None and np.any(hair_regions):
|
| 784 |
+
result = self._enhance_hair_compositing(frame, mask, background, hair_regions, result)
|
| 785 |
+
|
| 786 |
+
return result
|
| 787 |
+
|
| 788 |
+
except Exception as e:
|
| 789 |
+
logger.warning(f"Enhanced background replacement failed: {e}")
|
| 790 |
+
return replace_background_hq(frame, mask, background)
|
| 791 |
+
|
| 792 |
+
def _enhance_hair_compositing(self, frame: np.ndarray, mask: np.ndarray,
|
| 793 |
+
background: np.ndarray, hair_regions: np.ndarray,
|
| 794 |
+
initial_result: np.ndarray) -> np.ndarray:
|
| 795 |
+
"""Enhanced compositing specifically for hair regions"""
|
| 796 |
+
try:
|
| 797 |
+
# In hair regions, use softer alpha blending
|
| 798 |
+
hair_mask = hair_regions > 0
|
| 799 |
+
|
| 800 |
+
if np.any(hair_mask):
|
| 801 |
+
# Create soft alpha for hair regions
|
| 802 |
+
hair_alpha = cv2.GaussianBlur((hair_regions * mask / 255.0).astype(np.float32), (3, 3), 1.0)
|
| 803 |
+
hair_alpha = np.clip(hair_alpha, 0, 1)
|
| 804 |
+
|
| 805 |
+
# Apply softer blending only in hair regions
|
| 806 |
+
for c in range(3):
|
| 807 |
+
channel_blend = (frame[:, :, c].astype(np.float32) * hair_alpha +
|
| 808 |
+
background[:, :, c].astype(np.float32) * (1 - hair_alpha))
|
| 809 |
+
|
| 810 |
+
initial_result[:, :, c] = np.where(
|
| 811 |
+
hair_mask,
|
| 812 |
+
np.clip(channel_blend, 0, 255).astype(np.uint8),
|
| 813 |
+
initial_result[:, :, c]
|
| 814 |
+
)
|
| 815 |
+
|
| 816 |
+
return initial_result
|
| 817 |
+
|
| 818 |
+
except Exception as e:
|
| 819 |
+
logger.warning(f"Hair compositing enhancement failed: {e}")
|
| 820 |
+
return initial_result
|
| 821 |
+
|
| 822 |
+
# ============================================================================
|
| 823 |
+
# ORIGINAL FUNCTIONS PRESERVED FOR ROLLBACK
|
| 824 |
+
# ============================================================================
|
| 825 |
+
|
| 826 |
+
def _process_single_frame_original(
|
| 827 |
+
self,
|
| 828 |
+
frame: np.ndarray,
|
| 829 |
+
background: np.ndarray,
|
| 830 |
+
frame_number: int,
|
| 831 |
+
preview_mask: bool,
|
| 832 |
+
preview_greenscreen: bool
|
| 833 |
+
) -> np.ndarray:
|
| 834 |
+
"""ORIGINAL: Process a single video frame (preserved for rollback)"""
|
| 835 |
|
| 836 |
try:
|
| 837 |
# Person segmentation
|
|
|
|
| 839 |
|
| 840 |
# Mask refinement (keyframe-based for performance)
|
| 841 |
if self._should_refine_mask(frame_number):
|
| 842 |
+
refined_mask = self._refine_mask_original(frame, mask, frame_number)
|
| 843 |
self.last_refined_mask = refined_mask.copy()
|
| 844 |
else:
|
| 845 |
# Use temporal consistency with previous refined mask
|
| 846 |
+
refined_mask = self._apply_temporal_consistency_original(mask, frame_number)
|
| 847 |
|
| 848 |
# Generate output based on mode
|
| 849 |
if preview_mask:
|
| 850 |
+
return self._create_mask_preview_original(frame, refined_mask)
|
| 851 |
elif preview_greenscreen:
|
| 852 |
return self._create_greenscreen_preview(frame, refined_mask)
|
| 853 |
else:
|
|
|
|
| 865 |
if mask is None or mask.size == 0:
|
| 866 |
raise exceptions.SegmentationError(frame_number, "Segmentation returned empty mask")
|
| 867 |
|
| 868 |
+
# Store current frame for optical flow (if enhanced mode enabled)
|
| 869 |
+
if USE_OPTICAL_FLOW_TRACKING:
|
| 870 |
+
current_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 871 |
+
self.optical_flow_data = current_gray
|
| 872 |
+
|
| 873 |
return mask
|
| 874 |
|
| 875 |
except Exception as e:
|
| 876 |
self.stats['segmentation_errors'] += 1
|
| 877 |
raise exceptions.SegmentationError(frame_number, f"Segmentation failed: {str(e)}")
|
| 878 |
|
| 879 |
+
def _segment_person_enhanced(self, frame: np.ndarray, frame_number: int) -> np.ndarray:
|
| 880 |
+
"""ENHANCED: Perform person segmentation with improvements"""
|
| 881 |
+
try:
|
| 882 |
+
mask = segment_person_hq(frame, self.sam2_predictor)
|
| 883 |
+
|
| 884 |
+
if mask is None or mask.size == 0:
|
| 885 |
+
raise exceptions.SegmentationError(frame_number, "Segmentation returned empty mask")
|
| 886 |
+
|
| 887 |
+
# Store current frame for optical flow
|
| 888 |
+
current_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 889 |
+
self.optical_flow_data = current_gray
|
| 890 |
+
|
| 891 |
+
return mask
|
| 892 |
+
|
| 893 |
+
except Exception as e:
|
| 894 |
+
self.stats['segmentation_errors'] += 1
|
| 895 |
+
raise exceptions.SegmentationError(frame_number, f"Enhanced segmentation failed: {str(e)}")
|
| 896 |
+
|
| 897 |
def _should_refine_mask(self, frame_number: int) -> bool:
|
| 898 |
"""Determine if mask should be refined for this frame"""
|
| 899 |
# Refine on keyframes or if no previous refined mask exists
|
|
|
|
| 903 |
not self.quality_settings.get('temporal_consistency', True)
|
| 904 |
)
|
| 905 |
|
| 906 |
+
def _refine_mask_original(self, frame: np.ndarray, mask: np.ndarray, frame_number: int) -> np.ndarray:
|
| 907 |
+
"""ORIGINAL: Refine mask using MatAnyone or fallback methods"""
|
| 908 |
try:
|
| 909 |
if self.matanyone_model is not None and self.quality_settings.get('edge_refinement', True):
|
| 910 |
refined_mask = refine_mask_hq(frame, mask, self.matanyone_model)
|
|
|
|
| 921 |
return mask
|
| 922 |
|
| 923 |
def _fallback_mask_refinement(self, mask: np.ndarray) -> np.ndarray:
|
| 924 |
+
"""ORIGINAL: Fallback mask refinement using basic OpenCV operations"""
|
| 925 |
try:
|
| 926 |
# Morphological operations to clean up mask
|
| 927 |
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
|
|
|
|
| 937 |
logger.warning(f"Fallback mask refinement failed: {e}")
|
| 938 |
return mask
|
| 939 |
|
| 940 |
+
def _fallback_mask_refinement_enhanced(self, mask: np.ndarray) -> np.ndarray:
|
| 941 |
+
"""ENHANCED: Improved fallback mask refinement"""
|
| 942 |
+
try:
|
| 943 |
+
# More aggressive morphological operations
|
| 944 |
+
kernel_small = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
|
| 945 |
+
kernel_large = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
| 946 |
+
|
| 947 |
+
# Remove small noise
|
| 948 |
+
refined = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel_small)
|
| 949 |
+
# Fill gaps
|
| 950 |
+
refined = cv2.morphologyEx(refined, cv2.MORPH_CLOSE, kernel_large)
|
| 951 |
+
|
| 952 |
+
# Edge smoothing with bilateral filter instead of Gaussian
|
| 953 |
+
refined = cv2.bilateralFilter(refined, 9, 75, 75)
|
| 954 |
+
|
| 955 |
+
return refined
|
| 956 |
+
|
| 957 |
+
except Exception as e:
|
| 958 |
+
logger.warning(f"Enhanced fallback mask refinement failed: {e}")
|
| 959 |
+
return mask
|
| 960 |
+
|
| 961 |
+
def _apply_temporal_consistency_original(self, current_mask: np.ndarray, frame_number: int) -> np.ndarray:
|
| 962 |
+
"""ORIGINAL: Apply temporal consistency using previous refined mask"""
|
| 963 |
if self.last_refined_mask is None or not self.quality_settings.get('temporal_consistency', True):
|
| 964 |
return current_mask
|
| 965 |
|
|
|
|
| 987 |
logger.warning(f"Temporal consistency application failed: {e}")
|
| 988 |
return current_mask
|
| 989 |
|
| 990 |
+
def _create_mask_preview_original(self, frame: np.ndarray, mask: np.ndarray) -> np.ndarray:
|
| 991 |
+
"""ORIGINAL: Create mask visualization preview"""
|
| 992 |
try:
|
| 993 |
# Create colored mask overlay
|
| 994 |
mask_colored = np.zeros_like(frame)
|
|
|
|
| 1040 |
width: int,
|
| 1041 |
height: int
|
| 1042 |
) -> Optional[np.ndarray]:
|
| 1043 |
+
"""Prepare background image for processing (unchanged)"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1044 |
try:
|
| 1045 |
if background_choice == "custom" and custom_background_path:
|
| 1046 |
if not os.path.exists(custom_background_path):
|
|
|
|
| 1095 |
|
| 1096 |
def get_processing_capabilities(self) -> Dict[str, Any]:
|
| 1097 |
"""Get current processing capabilities"""
|
| 1098 |
+
capabilities = {
|
| 1099 |
'sam2_available': self.sam2_predictor is not None,
|
| 1100 |
'matanyone_available': self.matanyone_model is not None,
|
| 1101 |
'quality_preset': self.config.quality_preset,
|
|
|
|
| 1106 |
'supported_formats': ['.mp4', '.avi', '.mov', '.mkv'],
|
| 1107 |
'memory_limit_gb': self.memory_manager.memory_limit_gb
|
| 1108 |
}
|
| 1109 |
+
|
| 1110 |
+
# Add enhanced capabilities
|
| 1111 |
+
if USE_TEMPORAL_ENHANCEMENT:
|
| 1112 |
+
capabilities.update({
|
| 1113 |
+
'temporal_enhancement': True,
|
| 1114 |
+
'hair_detection': USE_HAIR_DETECTION,
|
| 1115 |
+
'optical_flow_tracking': USE_OPTICAL_FLOW_TRACKING,
|
| 1116 |
+
'adaptive_refinement': USE_ADAPTIVE_REFINEMENT
|
| 1117 |
+
})
|
| 1118 |
+
|
| 1119 |
+
return capabilities
|
| 1120 |
|
| 1121 |
def get_status(self) -> Dict[str, Any]:
|
| 1122 |
"""Get current processor status"""
|
| 1123 |
+
status = {
|
| 1124 |
'processing_active': self.processing_active,
|
| 1125 |
'models_available': {
|
| 1126 |
'sam2': self.sam2_predictor is not None,
|
|
|
|
| 1132 |
'memory_usage': self.memory_manager.get_memory_usage(),
|
| 1133 |
'capabilities': self.get_processing_capabilities()
|
| 1134 |
}
|
| 1135 |
+
|
| 1136 |
+
# Add enhanced status
|
| 1137 |
+
if USE_TEMPORAL_ENHANCEMENT:
|
| 1138 |
+
status.update({
|
| 1139 |
+
'mask_history_length': len(self.mask_history),
|
| 1140 |
+
'hair_cache_size': len(self.hair_regions_cache),
|
| 1141 |
+
'optical_flow_active': self.optical_flow_data is not None
|
| 1142 |
+
})
|
| 1143 |
+
|
| 1144 |
+
return status
|
| 1145 |
|
| 1146 |
def optimize_for_video(self, video_info: Dict[str, Any]) -> Dict[str, Any]:
|
| 1147 |
"""Optimize settings for specific video characteristics"""
|
|
|
|
| 1196 |
self.frame_cache.clear()
|
| 1197 |
self.last_refined_mask = None
|
| 1198 |
self.stats['cache_hits'] = 0
|
| 1199 |
+
self._reset_temporal_state()
|
| 1200 |
logger.debug("Frame cache and temporal state reset")
|
| 1201 |
|
| 1202 |
def cleanup(self):
|