Update processing/video/video_processor.py
Browse files- processing/video/video_processor.py +105 -63
processing/video/video_processor.py
CHANGED
|
@@ -2,105 +2,144 @@
|
|
| 2 |
"""
|
| 3 |
Compatibility shim: CoreVideoProcessor
|
| 4 |
|
| 5 |
-
Bridges the legacy import
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
"""
|
| 8 |
|
| 9 |
from __future__ import annotations
|
| 10 |
|
| 11 |
from dataclasses import dataclass
|
| 12 |
from typing import Optional, Dict, Any, Tuple, Callable
|
|
|
|
|
|
|
| 13 |
|
| 14 |
import cv2
|
| 15 |
import numpy as np
|
| 16 |
-
import time
|
| 17 |
-
import threading
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
#
|
| 23 |
from utils.cv_processing import (
|
| 24 |
segment_person_hq,
|
| 25 |
refine_mask_hq,
|
| 26 |
replace_background_hq,
|
| 27 |
create_professional_background,
|
| 28 |
validate_video_file,
|
|
|
|
| 29 |
)
|
| 30 |
|
|
|
|
| 31 |
@dataclass
|
| 32 |
class ProcessorConfig:
|
| 33 |
background_preset: str = "minimalist" # key in PROFESSIONAL_BACKGROUNDS
|
| 34 |
write_fps: Optional[float] = None # None -> keep source fps
|
| 35 |
|
|
|
|
| 36 |
class CoreVideoProcessor:
|
| 37 |
"""
|
| 38 |
Minimal, safe implementation used by core/app.py.
|
| 39 |
-
It relies on
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
"""
|
| 42 |
|
| 43 |
-
def __init__(self, config: Optional[ProcessorConfig] = None, models: Optional[
|
| 44 |
-
self.log =
|
| 45 |
self.config = config or ProcessorConfig()
|
| 46 |
-
self.models = models
|
| 47 |
-
|
| 48 |
-
self.models.
|
| 49 |
-
except Exception as e:
|
| 50 |
-
self.log.warning(f"Model load issue (will use fallbacks if needed): {e}")
|
| 51 |
|
| 52 |
-
#
|
| 53 |
def process_frame(self, frame: np.ndarray, background: np.ndarray) -> Dict[str, Any]:
|
| 54 |
-
"""Return dict with composited frame + mask; always
|
| 55 |
predictor = None
|
| 56 |
try:
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
elif hasattr(sam2_model, 'set_image'):
|
| 62 |
-
predictor = sam2_model
|
| 63 |
-
elif isinstance(sam2_model, dict) and 'model' in sam2_model:
|
| 64 |
-
self.log.warning("SAM2 loaded as dict format, not directly usable")
|
| 65 |
-
predictor = None
|
| 66 |
-
if predictor is None:
|
| 67 |
-
self.log.debug("SAM2 predictor not available, will use fallback")
|
| 68 |
except Exception as e:
|
| 69 |
self.log.warning(f"SAM2 predictor unavailable: {e}")
|
| 70 |
|
| 71 |
-
# 1)
|
| 72 |
mask = segment_person_hq(frame, predictor, fallback_enabled=True)
|
| 73 |
|
| 74 |
-
# 2)
|
| 75 |
matanyone = None
|
| 76 |
try:
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
matanyone = matanyone_model
|
| 80 |
except Exception as e:
|
| 81 |
-
self.log.warning(f"
|
| 82 |
|
| 83 |
mask_refined = refine_mask_hq(frame, mask, matanyone, fallback_enabled=True)
|
| 84 |
|
| 85 |
-
# 3)
|
| 86 |
out = replace_background_hq(frame, mask_refined, background, fallback_enabled=True)
|
| 87 |
|
| 88 |
return {"frame": out, "mask": mask_refined}
|
| 89 |
|
| 90 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
def process_video(
|
| 92 |
self,
|
| 93 |
input_path: str,
|
| 94 |
output_path: str,
|
| 95 |
bg_config: Optional[Dict[str, Any]] = None,
|
| 96 |
-
progress_callback: Optional[Callable[[int, int, float], None]] = None,
|
| 97 |
-
stop_event: Optional[threading.Event] = None
|
| 98 |
) -> Dict[str, Any]:
|
| 99 |
"""
|
| 100 |
-
Process a full video with live progress and optional
|
| 101 |
-
progress_callback
|
| 102 |
-
stop_event: threading.Event() - if set(), abort processing.
|
| 103 |
-
Returns: dict with stats.
|
| 104 |
"""
|
| 105 |
ok, msg = validate_video_file(input_path)
|
| 106 |
if not ok:
|
|
@@ -115,16 +154,16 @@ def process_video(
|
|
| 115 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 116 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 117 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 118 |
-
fps_out = self.config.write_fps or (fps if fps and fps > 0 else 25.0)
|
| 119 |
|
|
|
|
| 120 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 121 |
-
writer = cv2.VideoWriter(output_path, fourcc, fps_out, (width, height))
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
# Build background
|
| 124 |
-
|
| 125 |
-
preset = self.config.background_preset
|
| 126 |
-
cfg = bg_config or PROFESSIONAL_BACKGROUNDS.get(preset, PROFESSIONAL_BACKGROUNDS["minimalist"])
|
| 127 |
-
background = create_professional_background(cfg, width, height)
|
| 128 |
|
| 129 |
frame_count = 0
|
| 130 |
start_time = time.time()
|
|
@@ -134,24 +173,25 @@ def process_video(
|
|
| 134 |
if not ret:
|
| 135 |
break
|
| 136 |
|
| 137 |
-
#
|
| 138 |
if stop_event is not None and stop_event.is_set():
|
| 139 |
-
self.log.info("Processing stopped by user request")
|
| 140 |
break
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
|
|
|
| 144 |
frame_count += 1
|
| 145 |
|
| 146 |
-
#
|
| 147 |
if progress_callback:
|
| 148 |
elapsed = time.time() - start_time
|
| 149 |
-
fps_live = frame_count / elapsed if elapsed > 0 else 0
|
| 150 |
-
|
| 151 |
-
frame_count,
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
finally:
|
| 156 |
cap.release()
|
| 157 |
writer.release()
|
|
@@ -161,8 +201,10 @@ def process_video(
|
|
| 161 |
"frames": frame_count,
|
| 162 |
"width": width,
|
| 163 |
"height": height,
|
| 164 |
-
"fps_out": fps_out
|
|
|
|
| 165 |
}
|
| 166 |
|
| 167 |
-
|
|
|
|
| 168 |
VideoProcessor = CoreVideoProcessor
|
|
|
|
| 2 |
"""
|
| 3 |
Compatibility shim: CoreVideoProcessor
|
| 4 |
|
| 5 |
+
Bridges the legacy import
|
| 6 |
+
from processing.video.video_processor import CoreVideoProcessor
|
| 7 |
+
to the modern pipeline functions in utils.cv_processing, using whatever
|
| 8 |
+
models provider is passed in (e.g., models.loaders.ModelLoader).
|
| 9 |
+
|
| 10 |
+
Requirements for the models provider:
|
| 11 |
+
- get_sam2() -> predictor or None
|
| 12 |
+
- get_matanyone() -> processor or None
|
| 13 |
"""
|
| 14 |
|
| 15 |
from __future__ import annotations
|
| 16 |
|
| 17 |
from dataclasses import dataclass
|
| 18 |
from typing import Optional, Dict, Any, Tuple, Callable
|
| 19 |
+
import time
|
| 20 |
+
import threading
|
| 21 |
|
| 22 |
import cv2
|
| 23 |
import numpy as np
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
# Try project logger; fall back to std logging
|
| 26 |
+
try:
|
| 27 |
+
from utils.logger import get_logger
|
| 28 |
+
_log = get_logger(__name__)
|
| 29 |
+
except Exception:
|
| 30 |
+
import logging
|
| 31 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s - %(message)s")
|
| 32 |
+
_log = logging.getLogger(__name__)
|
| 33 |
|
| 34 |
+
# CV pipeline helpers
|
| 35 |
from utils.cv_processing import (
|
| 36 |
segment_person_hq,
|
| 37 |
refine_mask_hq,
|
| 38 |
replace_background_hq,
|
| 39 |
create_professional_background,
|
| 40 |
validate_video_file,
|
| 41 |
+
PROFESSIONAL_BACKGROUNDS,
|
| 42 |
)
|
| 43 |
|
| 44 |
+
|
| 45 |
@dataclass
|
| 46 |
class ProcessorConfig:
|
| 47 |
background_preset: str = "minimalist" # key in PROFESSIONAL_BACKGROUNDS
|
| 48 |
write_fps: Optional[float] = None # None -> keep source fps
|
| 49 |
|
| 50 |
+
|
| 51 |
class CoreVideoProcessor:
|
| 52 |
"""
|
| 53 |
Minimal, safe implementation used by core/app.py.
|
| 54 |
+
It relies on a models provider (e.g., ModelLoader) that implements:
|
| 55 |
+
- get_sam2()
|
| 56 |
+
- get_matanyone()
|
| 57 |
+
and uses utils.cv_processing for the pipeline.
|
| 58 |
+
|
| 59 |
+
Supports progress callback and cancellation via stop_event.
|
| 60 |
"""
|
| 61 |
|
| 62 |
+
def __init__(self, config: Optional[ProcessorConfig] = None, models: Optional[Any] = None):
|
| 63 |
+
self.log = _log
|
| 64 |
self.config = config or ProcessorConfig()
|
| 65 |
+
self.models = models # do NOT load here; core/app handles loading
|
| 66 |
+
if self.models is None:
|
| 67 |
+
self.log.warning("CoreVideoProcessor initialized without a models provider; will use fallbacks.")
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
# ---------- Single frame ----------
|
| 70 |
def process_frame(self, frame: np.ndarray, background: np.ndarray) -> Dict[str, Any]:
|
| 71 |
+
"""Return dict with composited frame + mask; always attempts fallbacks."""
|
| 72 |
predictor = None
|
| 73 |
try:
|
| 74 |
+
if self.models and hasattr(self.models, "get_sam2"):
|
| 75 |
+
predictor = self.models.get_sam2()
|
| 76 |
+
# Some wrappers expose predictor directly, others are already usable
|
| 77 |
+
# segment_person_hq checks for set_image/predict itself.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
except Exception as e:
|
| 79 |
self.log.warning(f"SAM2 predictor unavailable: {e}")
|
| 80 |
|
| 81 |
+
# 1) segmentation (with fallbacks inside)
|
| 82 |
mask = segment_person_hq(frame, predictor, fallback_enabled=True)
|
| 83 |
|
| 84 |
+
# 2) refinement (MatAnyOne if available, else robust OpenCV path)
|
| 85 |
matanyone = None
|
| 86 |
try:
|
| 87 |
+
if self.models and hasattr(self.models, "get_matanyone"):
|
| 88 |
+
matanyone = self.models.get_matanyone()
|
|
|
|
| 89 |
except Exception as e:
|
| 90 |
+
self.log.warning(f"MatAnyOne unavailable: {e}")
|
| 91 |
|
| 92 |
mask_refined = refine_mask_hq(frame, mask, matanyone, fallback_enabled=True)
|
| 93 |
|
| 94 |
+
# 3) compositing
|
| 95 |
out = replace_background_hq(frame, mask_refined, background, fallback_enabled=True)
|
| 96 |
|
| 97 |
return {"frame": out, "mask": mask_refined}
|
| 98 |
|
| 99 |
+
# ---------- Build background once per video ----------
|
| 100 |
+
def _prepare_background_from_config(
|
| 101 |
+
self,
|
| 102 |
+
bg_config: Optional[Dict[str, Any]],
|
| 103 |
+
width: int,
|
| 104 |
+
height: int
|
| 105 |
+
) -> np.ndarray:
|
| 106 |
+
"""
|
| 107 |
+
Accepts either:
|
| 108 |
+
- {"custom_path": "/path/to/image.png"} → load image
|
| 109 |
+
- {"background_choice": "minimalist"} → preset
|
| 110 |
+
- None → use self.config.background_preset
|
| 111 |
+
"""
|
| 112 |
+
# 1) custom image?
|
| 113 |
+
if bg_config and bg_config.get("custom_path"):
|
| 114 |
+
path = bg_config["custom_path"]
|
| 115 |
+
img = cv2.imread(path, cv2.IMREAD_COLOR)
|
| 116 |
+
if img is None:
|
| 117 |
+
self.log.warning(f"Custom background at '{path}' could not be read. Falling back to preset.")
|
| 118 |
+
else:
|
| 119 |
+
return cv2.resize(img, (width, height), interpolation=cv2.INTER_LANCZOS4)
|
| 120 |
+
|
| 121 |
+
# 2) preset (explicit choice or default)
|
| 122 |
+
choice = None
|
| 123 |
+
if bg_config and "background_choice" in bg_config:
|
| 124 |
+
choice = bg_config["background_choice"]
|
| 125 |
+
if not choice:
|
| 126 |
+
choice = self.config.background_preset
|
| 127 |
+
|
| 128 |
+
cfg = PROFESSIONAL_BACKGROUNDS.get(choice, PROFESSIONAL_BACKGROUNDS["minimalist"])
|
| 129 |
+
return create_professional_background(cfg, width, height)
|
| 130 |
+
|
| 131 |
+
# ---------- Full video ----------
|
| 132 |
def process_video(
|
| 133 |
self,
|
| 134 |
input_path: str,
|
| 135 |
output_path: str,
|
| 136 |
bg_config: Optional[Dict[str, Any]] = None,
|
| 137 |
+
progress_callback: Optional[Callable[[int, int, float], None]] = None,
|
| 138 |
+
stop_event: Optional[threading.Event] = None
|
| 139 |
) -> Dict[str, Any]:
|
| 140 |
"""
|
| 141 |
+
Process a full video with live progress and optional cancel.
|
| 142 |
+
progress_callback(current_frame, total_frames, fps_live)
|
|
|
|
|
|
|
| 143 |
"""
|
| 144 |
ok, msg = validate_video_file(input_path)
|
| 145 |
if not ok:
|
|
|
|
| 154 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 155 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 156 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
| 157 |
|
| 158 |
+
fps_out = self.config.write_fps or (fps if fps and fps > 0 else 25.0)
|
| 159 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 160 |
+
writer = cv2.VideoWriter(output_path, fourcc, float(fps_out), (width, height))
|
| 161 |
+
if not writer.isOpened():
|
| 162 |
+
cap.release()
|
| 163 |
+
raise RuntimeError(f"Could not open writer for: {output_path}")
|
| 164 |
|
| 165 |
+
# Build background once
|
| 166 |
+
background = self._prepare_background_from_config(bg_config, width, height)
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
frame_count = 0
|
| 169 |
start_time = time.time()
|
|
|
|
| 173 |
if not ret:
|
| 174 |
break
|
| 175 |
|
| 176 |
+
# Cancel support
|
| 177 |
if stop_event is not None and stop_event.is_set():
|
| 178 |
+
self.log.info("Processing stopped by user request.")
|
| 179 |
break
|
| 180 |
|
| 181 |
+
# Process single frame
|
| 182 |
+
result = self.process_frame(frame, background)
|
| 183 |
+
writer.write(result["frame"])
|
| 184 |
frame_count += 1
|
| 185 |
|
| 186 |
+
# Progress callback
|
| 187 |
if progress_callback:
|
| 188 |
elapsed = time.time() - start_time
|
| 189 |
+
fps_live = frame_count / elapsed if elapsed > 0 else 0.0
|
| 190 |
+
try:
|
| 191 |
+
progress_callback(frame_count, total_frames, fps_live)
|
| 192 |
+
except Exception:
|
| 193 |
+
# Don’t break processing due to a UI callback error
|
| 194 |
+
pass
|
| 195 |
finally:
|
| 196 |
cap.release()
|
| 197 |
writer.release()
|
|
|
|
| 201 |
"frames": frame_count,
|
| 202 |
"width": width,
|
| 203 |
"height": height,
|
| 204 |
+
"fps_out": float(fps_out),
|
| 205 |
+
"output_path": output_path,
|
| 206 |
}
|
| 207 |
|
| 208 |
+
|
| 209 |
+
# Backward-compat alias used elsewhere
|
| 210 |
VideoProcessor = CoreVideoProcessor
|