Delete models/models
Browse files- models/models/loader.py +0 -491
models/models/loader.py
DELETED
|
@@ -1,491 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Model Loading Module
|
| 3 |
-
Handles loading and validation of SAM2 and MatAnyone AI models
|
| 4 |
-
"""
|
| 5 |
-
|
| 6 |
-
# ============================================================================
|
| 7 |
-
# IMPORTS AND DEPENDENCIES
|
| 8 |
-
# ============================================================================
|
| 9 |
-
|
| 10 |
-
import os
|
| 11 |
-
import sys
|
| 12 |
-
import gc
|
| 13 |
-
import traceback
|
| 14 |
-
from pathlib import Path
|
| 15 |
-
from typing import Optional, Dict, Any, Tuple
|
| 16 |
-
import logging
|
| 17 |
-
|
| 18 |
-
import torch
|
| 19 |
-
import numpy as np
|
| 20 |
-
from huggingface_hub import hf_hub_download
|
| 21 |
-
|
| 22 |
-
# ============================================================================
|
| 23 |
-
# SYSTEM PATH CONFIGURATION
|
| 24 |
-
# ============================================================================
|
| 25 |
-
|
| 26 |
-
def setup_paths():
|
| 27 |
-
"""Configure system paths for model imports"""
|
| 28 |
-
current_dir = Path(__file__).parent.absolute()
|
| 29 |
-
project_root = current_dir.parent.parent
|
| 30 |
-
|
| 31 |
-
paths_to_add = [
|
| 32 |
-
str(project_root),
|
| 33 |
-
str(project_root / "models"),
|
| 34 |
-
str(project_root / "models" / "sam2"),
|
| 35 |
-
str(project_root / "models" / "matting"),
|
| 36 |
-
]
|
| 37 |
-
|
| 38 |
-
for path in paths_to_add:
|
| 39 |
-
if path not in sys.path:
|
| 40 |
-
sys.path.insert(0, path)
|
| 41 |
-
|
| 42 |
-
return project_root
|
| 43 |
-
|
| 44 |
-
PROJECT_ROOT = setup_paths()
|
| 45 |
-
|
| 46 |
-
# ============================================================================
|
| 47 |
-
# MODEL IMPORTS (After Path Setup)
|
| 48 |
-
# ============================================================================
|
| 49 |
-
|
| 50 |
-
try:
|
| 51 |
-
from sam2.build_sam import build_sam2_video_predictor
|
| 52 |
-
from models.matting.model_initialization import ModelInitializer
|
| 53 |
-
except ImportError as e:
|
| 54 |
-
logging.error(f"Failed to import models: {e}")
|
| 55 |
-
logging.error(f"Current sys.path: {sys.path}")
|
| 56 |
-
raise
|
| 57 |
-
|
| 58 |
-
# ============================================================================
|
| 59 |
-
# CONFIGURATION
|
| 60 |
-
# ============================================================================
|
| 61 |
-
|
| 62 |
-
class ModelConfig:
|
| 63 |
-
"""Model configuration and paths"""
|
| 64 |
-
|
| 65 |
-
# Model identifiers
|
| 66 |
-
SAM2_MODEL_ID = "facebook/sam2-hiera-large"
|
| 67 |
-
MATANYONE_REPO = "bytedance/Matting-Anything"
|
| 68 |
-
|
| 69 |
-
# Model filenames
|
| 70 |
-
SAM2_CHECKPOINT = "sam2_hiera_large.pt"
|
| 71 |
-
SAM2_CONFIG = "sam2_hiera_l.yaml"
|
| 72 |
-
MATANYONE_CHECKPOINT = "model_any_mat_vitl.pth"
|
| 73 |
-
|
| 74 |
-
# Default paths
|
| 75 |
-
DEFAULT_CACHE_DIR = Path.home() / ".cache" / "huggingface" / "hub"
|
| 76 |
-
|
| 77 |
-
# Device configuration
|
| 78 |
-
CUDA_AVAILABLE = torch.cuda.is_available()
|
| 79 |
-
DEFAULT_DEVICE = "cuda" if CUDA_AVAILABLE else "cpu"
|
| 80 |
-
|
| 81 |
-
# Memory thresholds (in GB)
|
| 82 |
-
MIN_GPU_MEMORY = 8.0
|
| 83 |
-
MIN_RAM = 16.0
|
| 84 |
-
RECOMMENDED_GPU_MEMORY = 12.0
|
| 85 |
-
RECOMMENDED_RAM = 32.0
|
| 86 |
-
|
| 87 |
-
# ============================================================================
|
| 88 |
-
# UTILITY FUNCTIONS
|
| 89 |
-
# ============================================================================
|
| 90 |
-
|
| 91 |
-
def get_memory_info() -> Dict[str, float]:
|
| 92 |
-
"""Get system memory information"""
|
| 93 |
-
import psutil
|
| 94 |
-
|
| 95 |
-
memory_info = {
|
| 96 |
-
'ram_total_gb': psutil.virtual_memory().total / (1024**3),
|
| 97 |
-
'ram_available_gb': psutil.virtual_memory().available / (1024**3),
|
| 98 |
-
'ram_used_percent': psutil.virtual_memory().percent
|
| 99 |
-
}
|
| 100 |
-
|
| 101 |
-
if torch.cuda.is_available():
|
| 102 |
-
try:
|
| 103 |
-
gpu_props = torch.cuda.get_device_properties(0)
|
| 104 |
-
memory_info.update({
|
| 105 |
-
'gpu_name': gpu_props.name,
|
| 106 |
-
'gpu_total_gb': gpu_props.total_memory / (1024**3),
|
| 107 |
-
'gpu_allocated_gb': torch.cuda.memory_allocated(0) / (1024**3),
|
| 108 |
-
'gpu_reserved_gb': torch.cuda.memory_reserved(0) / (1024**3)
|
| 109 |
-
})
|
| 110 |
-
except Exception as e:
|
| 111 |
-
logging.warning(f"Could not get GPU memory info: {e}")
|
| 112 |
-
|
| 113 |
-
return memory_info
|
| 114 |
-
|
| 115 |
-
def clean_memory():
|
| 116 |
-
"""Clean up GPU and system memory"""
|
| 117 |
-
if torch.cuda.is_available():
|
| 118 |
-
torch.cuda.empty_cache()
|
| 119 |
-
torch.cuda.synchronize()
|
| 120 |
-
gc.collect()
|
| 121 |
-
|
| 122 |
-
def format_memory_status(memory_info: Dict[str, float]) -> str:
|
| 123 |
-
"""Format memory information for display"""
|
| 124 |
-
lines = [
|
| 125 |
-
"=== System Memory Status ===",
|
| 126 |
-
f"RAM: {memory_info['ram_available_gb']:.1f}GB / {memory_info['ram_total_gb']:.1f}GB available ({memory_info['ram_used_percent']:.1f}% used)"
|
| 127 |
-
]
|
| 128 |
-
|
| 129 |
-
if 'gpu_name' in memory_info:
|
| 130 |
-
lines.extend([
|
| 131 |
-
f"GPU: {memory_info['gpu_name']}",
|
| 132 |
-
f" Total: {memory_info['gpu_total_gb']:.1f}GB",
|
| 133 |
-
f" Allocated: {memory_info['gpu_allocated_gb']:.2f}GB",
|
| 134 |
-
f" Reserved: {memory_info['gpu_reserved_gb']:.2f}GB"
|
| 135 |
-
])
|
| 136 |
-
else:
|
| 137 |
-
lines.append("GPU: Not available")
|
| 138 |
-
|
| 139 |
-
return "\n".join(lines)
|
| 140 |
-
|
| 141 |
-
# ============================================================================
|
| 142 |
-
# MODEL LOADER CLASS
|
| 143 |
-
# ============================================================================
|
| 144 |
-
|
| 145 |
-
class ModelLoader:
|
| 146 |
-
"""Manages loading and initialization of AI models"""
|
| 147 |
-
|
| 148 |
-
def __init__(self, cache_dir: Optional[Path] = None, device: Optional[str] = None):
|
| 149 |
-
"""
|
| 150 |
-
Initialize model loader
|
| 151 |
-
|
| 152 |
-
Args:
|
| 153 |
-
cache_dir: Directory for caching models
|
| 154 |
-
device: Device to load models on ('cuda' or 'cpu')
|
| 155 |
-
"""
|
| 156 |
-
self.cache_dir = Path(cache_dir) if cache_dir else ModelConfig.DEFAULT_CACHE_DIR
|
| 157 |
-
self.device = device or ModelConfig.DEFAULT_DEVICE
|
| 158 |
-
|
| 159 |
-
# Model instances
|
| 160 |
-
self.sam2_predictor = None
|
| 161 |
-
self.matanyone_model = None
|
| 162 |
-
|
| 163 |
-
# Status tracking
|
| 164 |
-
self.models_loaded = False
|
| 165 |
-
self.load_errors = []
|
| 166 |
-
|
| 167 |
-
# Setup logging
|
| 168 |
-
self.logger = logging.getLogger(__name__)
|
| 169 |
-
|
| 170 |
-
# Validate system requirements
|
| 171 |
-
self._check_system_requirements()
|
| 172 |
-
|
| 173 |
-
def _check_system_requirements(self) -> bool:
|
| 174 |
-
"""Check if system meets minimum requirements"""
|
| 175 |
-
memory_info = get_memory_info()
|
| 176 |
-
warnings = []
|
| 177 |
-
|
| 178 |
-
# Check RAM
|
| 179 |
-
if memory_info['ram_total_gb'] < ModelConfig.MIN_RAM:
|
| 180 |
-
warnings.append(f"⚠️ Low RAM: {memory_info['ram_total_gb']:.1f}GB (minimum {ModelConfig.MIN_RAM}GB recommended)")
|
| 181 |
-
|
| 182 |
-
# Check GPU
|
| 183 |
-
if self.device == "cuda":
|
| 184 |
-
if 'gpu_total_gb' in memory_info:
|
| 185 |
-
if memory_info['gpu_total_gb'] < ModelConfig.MIN_GPU_MEMORY:
|
| 186 |
-
warnings.append(f"⚠️ Low GPU memory: {memory_info['gpu_total_gb']:.1f}GB (minimum {ModelConfig.MIN_GPU_MEMORY}GB recommended)")
|
| 187 |
-
else:
|
| 188 |
-
warnings.append("⚠️ Could not detect GPU memory")
|
| 189 |
-
|
| 190 |
-
if warnings:
|
| 191 |
-
self.logger.warning("\n".join(warnings))
|
| 192 |
-
|
| 193 |
-
return len(warnings) == 0
|
| 194 |
-
|
| 195 |
-
def _download_model(self, repo_id: str, filename: str, repo_type: str = "model") -> Path:
|
| 196 |
-
"""
|
| 197 |
-
Download model from Hugging Face Hub
|
| 198 |
-
|
| 199 |
-
Args:
|
| 200 |
-
repo_id: Repository ID on Hugging Face
|
| 201 |
-
filename: Name of the file to download
|
| 202 |
-
repo_type: Type of repository
|
| 203 |
-
|
| 204 |
-
Returns:
|
| 205 |
-
Path to downloaded file
|
| 206 |
-
"""
|
| 207 |
-
try:
|
| 208 |
-
self.logger.info(f"Downloading {filename} from {repo_id}...")
|
| 209 |
-
|
| 210 |
-
local_path = hf_hub_download(
|
| 211 |
-
repo_id=repo_id,
|
| 212 |
-
filename=filename,
|
| 213 |
-
repo_type=repo_type,
|
| 214 |
-
cache_dir=str(self.cache_dir),
|
| 215 |
-
resume_download=True
|
| 216 |
-
)
|
| 217 |
-
|
| 218 |
-
self.logger.info(f"✓ Downloaded to: {local_path}")
|
| 219 |
-
return Path(local_path)
|
| 220 |
-
|
| 221 |
-
except Exception as e:
|
| 222 |
-
error_msg = f"Failed to download {filename}: {str(e)}"
|
| 223 |
-
self.logger.error(error_msg)
|
| 224 |
-
self.load_errors.append(error_msg)
|
| 225 |
-
raise
|
| 226 |
-
|
| 227 |
-
def _load_sam2(self) -> bool:
|
| 228 |
-
"""
|
| 229 |
-
Load SAM2 model
|
| 230 |
-
|
| 231 |
-
Returns:
|
| 232 |
-
Success status
|
| 233 |
-
"""
|
| 234 |
-
try:
|
| 235 |
-
self.logger.info("Loading SAM2 model...")
|
| 236 |
-
|
| 237 |
-
# Download checkpoint and config
|
| 238 |
-
checkpoint_path = self._download_model(
|
| 239 |
-
ModelConfig.SAM2_MODEL_ID,
|
| 240 |
-
ModelConfig.SAM2_CHECKPOINT
|
| 241 |
-
)
|
| 242 |
-
|
| 243 |
-
config_path = self._download_model(
|
| 244 |
-
ModelConfig.SAM2_MODEL_ID,
|
| 245 |
-
ModelConfig.SAM2_CONFIG
|
| 246 |
-
)
|
| 247 |
-
|
| 248 |
-
# Verify files exist
|
| 249 |
-
if not checkpoint_path.exists():
|
| 250 |
-
raise FileNotFoundError(f"SAM2 checkpoint not found: {checkpoint_path}")
|
| 251 |
-
if not config_path.exists():
|
| 252 |
-
raise FileNotFoundError(f"SAM2 config not found: {config_path}")
|
| 253 |
-
|
| 254 |
-
# Build predictor
|
| 255 |
-
self.sam2_predictor = build_sam2_video_predictor(
|
| 256 |
-
str(config_path),
|
| 257 |
-
str(checkpoint_path),
|
| 258 |
-
device=self.device
|
| 259 |
-
)
|
| 260 |
-
|
| 261 |
-
if self.sam2_predictor is None:
|
| 262 |
-
raise RuntimeError("SAM2 predictor initialization returned None")
|
| 263 |
-
|
| 264 |
-
self.logger.info("✓ SAM2 model loaded successfully")
|
| 265 |
-
return True
|
| 266 |
-
|
| 267 |
-
except Exception as e:
|
| 268 |
-
error_msg = f"Failed to load SAM2: {str(e)}"
|
| 269 |
-
self.logger.error(error_msg)
|
| 270 |
-
self.logger.debug(traceback.format_exc())
|
| 271 |
-
self.load_errors.append(error_msg)
|
| 272 |
-
return False
|
| 273 |
-
|
| 274 |
-
def _load_matanyone(self) -> bool:
|
| 275 |
-
"""
|
| 276 |
-
Load MatAnyone model
|
| 277 |
-
|
| 278 |
-
Returns:
|
| 279 |
-
Success status
|
| 280 |
-
"""
|
| 281 |
-
try:
|
| 282 |
-
self.logger.info("Loading MatAnyone model...")
|
| 283 |
-
|
| 284 |
-
# Download checkpoint
|
| 285 |
-
checkpoint_path = self._download_model(
|
| 286 |
-
ModelConfig.MATANYONE_REPO,
|
| 287 |
-
ModelConfig.MATANYONE_CHECKPOINT
|
| 288 |
-
)
|
| 289 |
-
|
| 290 |
-
if not checkpoint_path.exists():
|
| 291 |
-
raise FileNotFoundError(f"MatAnyone checkpoint not found: {checkpoint_path}")
|
| 292 |
-
|
| 293 |
-
# Initialize model
|
| 294 |
-
model_init = ModelInitializer(device=self.device)
|
| 295 |
-
self.matanyone_model = model_init.setup_models(str(checkpoint_path))
|
| 296 |
-
|
| 297 |
-
if self.matanyone_model is None:
|
| 298 |
-
raise RuntimeError("MatAnyone model initialization returned None")
|
| 299 |
-
|
| 300 |
-
self.logger.info("✓ MatAnyone model loaded successfully")
|
| 301 |
-
return True
|
| 302 |
-
|
| 303 |
-
except Exception as e:
|
| 304 |
-
error_msg = f"Failed to load MatAnyone: {str(e)}"
|
| 305 |
-
self.logger.error(error_msg)
|
| 306 |
-
self.logger.debug(traceback.format_exc())
|
| 307 |
-
self.load_errors.append(error_msg)
|
| 308 |
-
return False
|
| 309 |
-
|
| 310 |
-
def load_models(self, force_reload: bool = False) -> bool:
|
| 311 |
-
"""
|
| 312 |
-
Load all models
|
| 313 |
-
|
| 314 |
-
Args:
|
| 315 |
-
force_reload: Force reload even if already loaded
|
| 316 |
-
|
| 317 |
-
Returns:
|
| 318 |
-
Success status
|
| 319 |
-
"""
|
| 320 |
-
if self.models_loaded and not force_reload:
|
| 321 |
-
self.logger.info("Models already loaded")
|
| 322 |
-
return True
|
| 323 |
-
|
| 324 |
-
self.logger.info("Starting model loading process...")
|
| 325 |
-
self.logger.info(format_memory_status(get_memory_info()))
|
| 326 |
-
|
| 327 |
-
# Clean memory before loading
|
| 328 |
-
clean_memory()
|
| 329 |
-
|
| 330 |
-
# Reset status
|
| 331 |
-
self.models_loaded = False
|
| 332 |
-
self.load_errors = []
|
| 333 |
-
|
| 334 |
-
# Load models
|
| 335 |
-
sam2_success = self._load_sam2()
|
| 336 |
-
matanyone_success = self._load_matanyone()
|
| 337 |
-
|
| 338 |
-
# Update status
|
| 339 |
-
self.models_loaded = sam2_success and matanyone_success
|
| 340 |
-
|
| 341 |
-
# Report results
|
| 342 |
-
if self.models_loaded:
|
| 343 |
-
self.logger.info("✅ All models loaded successfully")
|
| 344 |
-
self.logger.info(format_memory_status(get_memory_info()))
|
| 345 |
-
else:
|
| 346 |
-
self.logger.error("❌ Some models failed to load:")
|
| 347 |
-
for error in self.load_errors:
|
| 348 |
-
self.logger.error(f" - {error}")
|
| 349 |
-
|
| 350 |
-
return self.models_loaded
|
| 351 |
-
|
| 352 |
-
def validate_models(self) -> Tuple[bool, Dict[str, Any]]:
|
| 353 |
-
"""
|
| 354 |
-
Validate loaded models
|
| 355 |
-
|
| 356 |
-
Returns:
|
| 357 |
-
Tuple of (success status, validation results)
|
| 358 |
-
"""
|
| 359 |
-
results = {
|
| 360 |
-
'sam2': {'loaded': False, 'functional': False, 'error': None},
|
| 361 |
-
'matanyone': {'loaded': False, 'functional': False, 'error': None},
|
| 362 |
-
'memory': get_memory_info()
|
| 363 |
-
}
|
| 364 |
-
|
| 365 |
-
# Check SAM2
|
| 366 |
-
if self.sam2_predictor is not None:
|
| 367 |
-
results['sam2']['loaded'] = True
|
| 368 |
-
try:
|
| 369 |
-
# Simple functionality test
|
| 370 |
-
test_frames = torch.randn(1, 3, 256, 256).to(self.device)
|
| 371 |
-
with torch.no_grad():
|
| 372 |
-
# Just check if the model responds without error
|
| 373 |
-
_ = self.sam2_predictor.model.image_encoder(test_frames)
|
| 374 |
-
results['sam2']['functional'] = True
|
| 375 |
-
except Exception as e:
|
| 376 |
-
results['sam2']['error'] = str(e)
|
| 377 |
-
self.logger.error(f"SAM2 validation failed: {e}")
|
| 378 |
-
|
| 379 |
-
# Check MatAnyone
|
| 380 |
-
if self.matanyone_model is not None:
|
| 381 |
-
results['matanyone']['loaded'] = True
|
| 382 |
-
try:
|
| 383 |
-
# Simple functionality test
|
| 384 |
-
test_input = torch.randn(1, 4, 256, 256).to(self.device)
|
| 385 |
-
with torch.no_grad():
|
| 386 |
-
# Just check if the model responds without error
|
| 387 |
-
_ = self.matanyone_model(test_input)
|
| 388 |
-
results['matanyone']['functional'] = True
|
| 389 |
-
except Exception as e:
|
| 390 |
-
results['matanyone']['error'] = str(e)
|
| 391 |
-
self.logger.error(f"MatAnyone validation failed: {e}")
|
| 392 |
-
|
| 393 |
-
# Overall success
|
| 394 |
-
success = (results['sam2']['functional'] and
|
| 395 |
-
results['matanyone']['functional'])
|
| 396 |
-
|
| 397 |
-
return success, results
|
| 398 |
-
|
| 399 |
-
def cleanup(self):
|
| 400 |
-
"""Clean up models and free memory"""
|
| 401 |
-
self.logger.info("Cleaning up models...")
|
| 402 |
-
|
| 403 |
-
# Delete model instances
|
| 404 |
-
if self.sam2_predictor is not None:
|
| 405 |
-
del self.sam2_predictor
|
| 406 |
-
self.sam2_predictor = None
|
| 407 |
-
|
| 408 |
-
if self.matanyone_model is not None:
|
| 409 |
-
del self.matanyone_model
|
| 410 |
-
self.matanyone_model = None
|
| 411 |
-
|
| 412 |
-
# Clear memory
|
| 413 |
-
clean_memory()
|
| 414 |
-
|
| 415 |
-
self.models_loaded = False
|
| 416 |
-
self.logger.info("✓ Cleanup complete")
|
| 417 |
-
|
| 418 |
-
def get_load_summary(self) -> str:
|
| 419 |
-
"""Get summary of loaded models"""
|
| 420 |
-
lines = ["=== Model Load Summary ==="]
|
| 421 |
-
|
| 422 |
-
if self.models_loaded:
|
| 423 |
-
lines.append("✅ Models loaded successfully")
|
| 424 |
-
lines.append(f" - SAM2: {'Loaded' if self.sam2_predictor else 'Not loaded'}")
|
| 425 |
-
lines.append(f" - MatAnyone: {'Loaded' if self.matanyone_model else 'Not loaded'}")
|
| 426 |
-
else:
|
| 427 |
-
lines.append("❌ Models not fully loaded")
|
| 428 |
-
if self.load_errors:
|
| 429 |
-
lines.append("Errors:")
|
| 430 |
-
for error in self.load_errors:
|
| 431 |
-
lines.append(f" - {error}")
|
| 432 |
-
|
| 433 |
-
lines.append("")
|
| 434 |
-
lines.append(format_memory_status(get_memory_info()))
|
| 435 |
-
|
| 436 |
-
return "\n".join(lines)
|
| 437 |
-
|
| 438 |
-
def get_matanyone(self):
|
| 439 |
-
"""Get MatAnyone model for backward compatibility"""
|
| 440 |
-
return self.matanyone_model
|
| 441 |
-
|
| 442 |
-
def get_sam2(self):
|
| 443 |
-
"""Get SAM2 predictor for backward compatibility"""
|
| 444 |
-
return self.sam2_predictor
|
| 445 |
-
|
| 446 |
-
# ============================================================================
|
| 447 |
-
# MAIN EXECUTION
|
| 448 |
-
# ============================================================================
|
| 449 |
-
|
| 450 |
-
def main():
|
| 451 |
-
"""Test model loading"""
|
| 452 |
-
logging.basicConfig(
|
| 453 |
-
level=logging.INFO,
|
| 454 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 455 |
-
)
|
| 456 |
-
|
| 457 |
-
print("Starting model loader test...")
|
| 458 |
-
print(f"Project root: {PROJECT_ROOT}")
|
| 459 |
-
print(f"Python path includes: {sys.path[:3]}")
|
| 460 |
-
|
| 461 |
-
# Create loader
|
| 462 |
-
loader = ModelLoader()
|
| 463 |
-
|
| 464 |
-
# Load models
|
| 465 |
-
success = loader.load_models()
|
| 466 |
-
|
| 467 |
-
if success:
|
| 468 |
-
print("\n✅ Models loaded successfully!")
|
| 469 |
-
|
| 470 |
-
# Validate models
|
| 471 |
-
valid, results = loader.validate_models()
|
| 472 |
-
|
| 473 |
-
print("\nValidation Results:")
|
| 474 |
-
print(f" SAM2: {results['sam2']}")
|
| 475 |
-
print(f" MatAnyone: {results['matanyone']}")
|
| 476 |
-
|
| 477 |
-
if valid:
|
| 478 |
-
print("\n✅ All models validated successfully!")
|
| 479 |
-
else:
|
| 480 |
-
print("\n⚠️ Some models failed validation")
|
| 481 |
-
else:
|
| 482 |
-
print("\n❌ Failed to load models")
|
| 483 |
-
print(loader.get_load_summary())
|
| 484 |
-
|
| 485 |
-
# Cleanup
|
| 486 |
-
input("\nPress Enter to cleanup and exit...")
|
| 487 |
-
loader.cleanup()
|
| 488 |
-
print("Done!")
|
| 489 |
-
|
| 490 |
-
if __name__ == "__main__":
|
| 491 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|