Create model_loader.py
Browse files- model_loader.py +437 -0
model_loader.py
ADDED
|
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Model Loading Module
|
| 3 |
+
Handles loading and validation of SAM2 and MatAnyone AI models
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import gc
|
| 8 |
+
import time
|
| 9 |
+
import logging
|
| 10 |
+
import tempfile
|
| 11 |
+
import traceback
|
| 12 |
+
from typing import Optional, Dict, Any, Tuple, Union
|
| 13 |
+
from pathlib import Path
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
import hydra
|
| 17 |
+
import gradio as gr
|
| 18 |
+
from omegaconf import DictConfig, OmegaConf
|
| 19 |
+
|
| 20 |
+
from exceptions import ModelLoadingError, ConfigurationError
|
| 21 |
+
from device_manager import DeviceManager
|
| 22 |
+
from memory_manager import MemoryManager
|
| 23 |
+
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
|
| 26 |
+
class ModelLoader:
|
| 27 |
+
"""
|
| 28 |
+
Comprehensive model loading and management for SAM2 and MatAnyone
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
def __init__(self, device_manager: DeviceManager, memory_manager: MemoryManager):
|
| 32 |
+
self.device_manager = device_manager
|
| 33 |
+
self.memory_manager = memory_manager
|
| 34 |
+
self.device = device_manager.get_optimal_device()
|
| 35 |
+
|
| 36 |
+
# Model storage
|
| 37 |
+
self.sam2_predictor = None
|
| 38 |
+
self.matanyone_model = None
|
| 39 |
+
self.matanyone_core = None
|
| 40 |
+
|
| 41 |
+
# Configuration paths
|
| 42 |
+
self.configs_dir = os.path.abspath("Configs")
|
| 43 |
+
self.checkpoints_dir = "./checkpoints"
|
| 44 |
+
os.makedirs(self.checkpoints_dir, exist_ok=True)
|
| 45 |
+
|
| 46 |
+
# Model loading statistics
|
| 47 |
+
self.loading_stats = {
|
| 48 |
+
'sam2_load_time': 0.0,
|
| 49 |
+
'matanyone_load_time': 0.0,
|
| 50 |
+
'total_load_time': 0.0,
|
| 51 |
+
'models_loaded': False,
|
| 52 |
+
'loading_attempts': 0
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
logger.info(f"ModelLoader initialized for device: {self.device}")
|
| 56 |
+
self._apply_gradio_patch()
|
| 57 |
+
|
| 58 |
+
def _apply_gradio_patch(self):
|
| 59 |
+
"""Apply Gradio schema monkey patch to prevent validation errors"""
|
| 60 |
+
try:
|
| 61 |
+
import gradio.components.base
|
| 62 |
+
original_get_config = gradio.components.base.Component.get_config
|
| 63 |
+
|
| 64 |
+
def patched_get_config(self):
|
| 65 |
+
config = original_get_config(self)
|
| 66 |
+
# Remove problematic keys that cause validation errors
|
| 67 |
+
config.pop("show_progress_bar", None)
|
| 68 |
+
config.pop("min_width", None)
|
| 69 |
+
config.pop("scale", None)
|
| 70 |
+
return config
|
| 71 |
+
|
| 72 |
+
gradio.components.base.Component.get_config = patched_get_config
|
| 73 |
+
logger.debug("Applied Gradio schema monkey patch")
|
| 74 |
+
|
| 75 |
+
except (ImportError, AttributeError) as e:
|
| 76 |
+
logger.warning(f"Could not apply Gradio monkey patch: {e}")
|
| 77 |
+
|
| 78 |
+
def load_all_models(self, progress: Optional[gr.Progress] = None) -> bool:
|
| 79 |
+
"""
|
| 80 |
+
Load both SAM2 and MatAnyone models with comprehensive error handling
|
| 81 |
+
|
| 82 |
+
Args:
|
| 83 |
+
progress: Gradio progress callback
|
| 84 |
+
|
| 85 |
+
Returns:
|
| 86 |
+
bool: True if all models loaded successfully
|
| 87 |
+
"""
|
| 88 |
+
start_time = time.time()
|
| 89 |
+
self.loading_stats['loading_attempts'] += 1
|
| 90 |
+
|
| 91 |
+
try:
|
| 92 |
+
logger.info("Starting model loading process...")
|
| 93 |
+
self._maybe_progress(progress, 0.0, "Initializing model loading...")
|
| 94 |
+
|
| 95 |
+
# Clear any existing models
|
| 96 |
+
self._cleanup_models()
|
| 97 |
+
|
| 98 |
+
# Load SAM2 first (typically faster)
|
| 99 |
+
logger.info("Loading SAM2 predictor...")
|
| 100 |
+
self._maybe_progress(progress, 0.1, "Loading SAM2 predictor...")
|
| 101 |
+
self.sam2_predictor = self._load_sam2_predictor(progress)
|
| 102 |
+
|
| 103 |
+
if self.sam2_predictor is None:
|
| 104 |
+
raise ModelLoadingError("Failed to load SAM2 predictor")
|
| 105 |
+
|
| 106 |
+
sam2_time = time.time() - start_time
|
| 107 |
+
self.loading_stats['sam2_load_time'] = sam2_time
|
| 108 |
+
logger.info(f"SAM2 loaded in {sam2_time:.2f}s")
|
| 109 |
+
|
| 110 |
+
# Load MatAnyone
|
| 111 |
+
logger.info("Loading MatAnyone model...")
|
| 112 |
+
self._maybe_progress(progress, 0.6, "Loading MatAnyone model...")
|
| 113 |
+
matanyone_start = time.time()
|
| 114 |
+
|
| 115 |
+
self.matanyone_model, self.matanyone_core = self._load_matanyone_model(progress)
|
| 116 |
+
|
| 117 |
+
if self.matanyone_model is None:
|
| 118 |
+
raise ModelLoadingError("Failed to load MatAnyone model")
|
| 119 |
+
|
| 120 |
+
matanyone_time = time.time() - matanyone_start
|
| 121 |
+
self.loading_stats['matanyone_load_time'] = matanyone_time
|
| 122 |
+
logger.info(f"MatAnyone loaded in {matanyone_time:.2f}s")
|
| 123 |
+
|
| 124 |
+
# Final setup
|
| 125 |
+
total_time = time.time() - start_time
|
| 126 |
+
self.loading_stats['total_load_time'] = total_time
|
| 127 |
+
self.loading_stats['models_loaded'] = True
|
| 128 |
+
|
| 129 |
+
self._maybe_progress(progress, 1.0, "Models loaded successfully!")
|
| 130 |
+
logger.info(f"All models loaded successfully in {total_time:.2f}s")
|
| 131 |
+
|
| 132 |
+
return True
|
| 133 |
+
|
| 134 |
+
except Exception as e:
|
| 135 |
+
error_msg = f"Model loading failed: {str(e)}"
|
| 136 |
+
logger.error(f"{error_msg}\n{traceback.format_exc()}")
|
| 137 |
+
|
| 138 |
+
# Cleanup on failure
|
| 139 |
+
self._cleanup_models()
|
| 140 |
+
self.loading_stats['models_loaded'] = False
|
| 141 |
+
|
| 142 |
+
if progress:
|
| 143 |
+
progress(1.0, desc=f"Error: {error_msg}")
|
| 144 |
+
|
| 145 |
+
raise ModelLoadingError(error_msg) from e
|
| 146 |
+
|
| 147 |
+
def _load_sam2_predictor(self, progress: Optional[gr.Progress] = None):
|
| 148 |
+
"""
|
| 149 |
+
Load SAM2 predictor with multiple fallback strategies
|
| 150 |
+
|
| 151 |
+
Args:
|
| 152 |
+
progress: Gradio progress callback
|
| 153 |
+
|
| 154 |
+
Returns:
|
| 155 |
+
SAM2ImagePredictor or None
|
| 156 |
+
"""
|
| 157 |
+
if not os.path.isdir(self.configs_dir):
|
| 158 |
+
raise ModelLoadingError(f"SAM2 Configs directory not found at '{self.configs_dir}'")
|
| 159 |
+
|
| 160 |
+
def try_load_sam2(config_name_with_yaml: str, checkpoint_name: str):
|
| 161 |
+
"""Attempt to load SAM2 with given config and checkpoint"""
|
| 162 |
+
try:
|
| 163 |
+
checkpoint_path = os.path.join(self.checkpoints_dir, checkpoint_name)
|
| 164 |
+
logger.info(f"Attempting SAM2 checkpoint: {checkpoint_path}")
|
| 165 |
+
|
| 166 |
+
# Download checkpoint if needed
|
| 167 |
+
if not os.path.exists(checkpoint_path):
|
| 168 |
+
logger.info(f"Downloading {checkpoint_name} from Hugging Face Hub...")
|
| 169 |
+
self._maybe_progress(progress, 0.2, f"Downloading {checkpoint_name}...")
|
| 170 |
+
|
| 171 |
+
from huggingface_hub import hf_hub_download
|
| 172 |
+
repo = f"facebook/{config_name_with_yaml.replace('.yaml','')}"
|
| 173 |
+
checkpoint_path = hf_hub_download(
|
| 174 |
+
repo_id=repo,
|
| 175 |
+
filename=checkpoint_name,
|
| 176 |
+
cache_dir=self.checkpoints_dir,
|
| 177 |
+
local_dir_use_symlinks=False
|
| 178 |
+
)
|
| 179 |
+
logger.info(f"Download complete: {checkpoint_path}")
|
| 180 |
+
|
| 181 |
+
# Reset and initialize Hydra
|
| 182 |
+
if hydra.core.global_hydra.GlobalHydra.instance().is_initialized():
|
| 183 |
+
hydra.core.global_hydra.GlobalHydra.instance().clear()
|
| 184 |
+
|
| 185 |
+
hydra.initialize(
|
| 186 |
+
version_base=None,
|
| 187 |
+
config_path=os.path.relpath(self.configs_dir),
|
| 188 |
+
job_name=f"sam2_load_{int(time.time())}"
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
# Build SAM2 model
|
| 192 |
+
config_name = config_name_with_yaml.replace(".yaml", "")
|
| 193 |
+
self._maybe_progress(progress, 0.4, f"Building {config_name}...")
|
| 194 |
+
|
| 195 |
+
from sam2.build_sam import build_sam2
|
| 196 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 197 |
+
|
| 198 |
+
sam2_model = build_sam2(config_name, checkpoint_path)
|
| 199 |
+
sam2_model.to(self.device)
|
| 200 |
+
predictor = SAM2ImagePredictor(sam2_model)
|
| 201 |
+
|
| 202 |
+
logger.info(f"SAM2 {config_name} loaded successfully on {self.device}")
|
| 203 |
+
return predictor
|
| 204 |
+
|
| 205 |
+
except Exception as e:
|
| 206 |
+
error_msg = f"Failed to load SAM2 {config_name_with_yaml}: {e}"
|
| 207 |
+
logger.warning(error_msg)
|
| 208 |
+
return None
|
| 209 |
+
|
| 210 |
+
# Try different SAM2 model sizes based on device capabilities
|
| 211 |
+
model_attempts = [
|
| 212 |
+
("sam2_hiera_large.yaml", "sam2_hiera_large.pt"),
|
| 213 |
+
("sam2_hiera_base_plus.yaml", "sam2_hiera_base_plus.pt"),
|
| 214 |
+
("sam2_hiera_small.yaml", "sam2_hiera_small.pt"),
|
| 215 |
+
("sam2_hiera_tiny.yaml", "sam2_hiera_tiny.pt")
|
| 216 |
+
]
|
| 217 |
+
|
| 218 |
+
# Prioritize model size based on device memory
|
| 219 |
+
if hasattr(self.device_manager, 'get_device_memory_gb'):
|
| 220 |
+
memory_gb = self.device_manager.get_device_memory_gb()
|
| 221 |
+
if memory_gb < 4:
|
| 222 |
+
model_attempts = model_attempts[2:] # Only tiny and small
|
| 223 |
+
elif memory_gb < 8:
|
| 224 |
+
model_attempts = model_attempts[1:] # Skip large
|
| 225 |
+
|
| 226 |
+
for config_yaml, checkpoint_pt in model_attempts:
|
| 227 |
+
predictor = try_load_sam2(config_yaml, checkpoint_pt)
|
| 228 |
+
if predictor is not None:
|
| 229 |
+
return predictor
|
| 230 |
+
|
| 231 |
+
raise ModelLoadingError("All SAM2 model loading attempts failed")
|
| 232 |
+
|
| 233 |
+
def _load_matanyone_model(self, progress: Optional[gr.Progress] = None):
|
| 234 |
+
"""
|
| 235 |
+
Load MatAnyone model with multiple import strategies
|
| 236 |
+
|
| 237 |
+
Args:
|
| 238 |
+
progress: Gradio progress callback
|
| 239 |
+
|
| 240 |
+
Returns:
|
| 241 |
+
Tuple[model, core] or (None, None)
|
| 242 |
+
"""
|
| 243 |
+
import_strategies = [
|
| 244 |
+
self._load_matanyone_strategy_1,
|
| 245 |
+
self._load_matanyone_strategy_2,
|
| 246 |
+
self._load_matanyone_strategy_3,
|
| 247 |
+
self._load_matanyone_strategy_4
|
| 248 |
+
]
|
| 249 |
+
|
| 250 |
+
for i, strategy in enumerate(import_strategies, 1):
|
| 251 |
+
try:
|
| 252 |
+
logger.info(f"Trying MatAnyone loading strategy {i}...")
|
| 253 |
+
self._maybe_progress(progress, 0.7 + (i * 0.05), f"MatAnyone strategy {i}...")
|
| 254 |
+
|
| 255 |
+
model, core = strategy()
|
| 256 |
+
if model is not None and core is not None:
|
| 257 |
+
logger.info(f"MatAnyone loaded successfully with strategy {i}")
|
| 258 |
+
return model, core
|
| 259 |
+
|
| 260 |
+
except Exception as e:
|
| 261 |
+
logger.warning(f"MatAnyone strategy {i} failed: {e}")
|
| 262 |
+
continue
|
| 263 |
+
|
| 264 |
+
raise ModelLoadingError("All MatAnyone loading strategies failed")
|
| 265 |
+
|
| 266 |
+
def _load_matanyone_strategy_1(self):
|
| 267 |
+
"""MatAnyone loading strategy 1: Direct model import"""
|
| 268 |
+
from matanyone.model.matanyone import MatAnyOne
|
| 269 |
+
from matanyone.inference.inference_core import InferenceCore
|
| 270 |
+
|
| 271 |
+
cfg = OmegaConf.create({
|
| 272 |
+
'model': {'name': 'MatAnyOne'},
|
| 273 |
+
'device': str(self.device),
|
| 274 |
+
'fp16': True if self.device.type == 'cuda' else False
|
| 275 |
+
})
|
| 276 |
+
|
| 277 |
+
net = MatAnyOne(cfg)
|
| 278 |
+
core = InferenceCore(net, cfg)
|
| 279 |
+
|
| 280 |
+
return net, core
|
| 281 |
+
|
| 282 |
+
def _load_matanyone_strategy_2(self):
|
| 283 |
+
"""MatAnyone loading strategy 2: Alternative import paths"""
|
| 284 |
+
from matanyone import MatAnyOne
|
| 285 |
+
from matanyone import InferenceCore
|
| 286 |
+
|
| 287 |
+
cfg = OmegaConf.create({
|
| 288 |
+
'model_name': 'matanyone',
|
| 289 |
+
'device': str(self.device)
|
| 290 |
+
})
|
| 291 |
+
|
| 292 |
+
model = MatAnyOne(cfg)
|
| 293 |
+
core = InferenceCore(model, cfg)
|
| 294 |
+
|
| 295 |
+
return model, core
|
| 296 |
+
|
| 297 |
+
def _load_matanyone_strategy_3(self):
|
| 298 |
+
"""MatAnyone loading strategy 3: Repository-specific imports"""
|
| 299 |
+
try:
|
| 300 |
+
from matanyone.models.matanyone import MatAnyOneModel
|
| 301 |
+
from matanyone.core import InferenceEngine
|
| 302 |
+
except ImportError:
|
| 303 |
+
from matanyone.src.models import MatAnyOneModel
|
| 304 |
+
from matanyone.src.core import InferenceEngine
|
| 305 |
+
|
| 306 |
+
config = {
|
| 307 |
+
'model_path': None, # Will use default
|
| 308 |
+
'device': self.device,
|
| 309 |
+
'precision': 'fp16' if self.device.type == 'cuda' else 'fp32'
|
| 310 |
+
}
|
| 311 |
+
|
| 312 |
+
model = MatAnyOneModel.from_pretrained(config)
|
| 313 |
+
engine = InferenceEngine(model)
|
| 314 |
+
|
| 315 |
+
return model, engine
|
| 316 |
+
|
| 317 |
+
def _load_matanyone_strategy_4(self):
|
| 318 |
+
"""MatAnyone loading strategy 4: Hugging Face Hub approach"""
|
| 319 |
+
from huggingface_hub import hf_hub_download
|
| 320 |
+
from matanyone import load_model_from_hub
|
| 321 |
+
|
| 322 |
+
# Try to load from Hugging Face
|
| 323 |
+
model_path = hf_hub_download(
|
| 324 |
+
repo_id="PeiqingYang/MatAnyone",
|
| 325 |
+
filename="pytorch_model.bin",
|
| 326 |
+
cache_dir=self.checkpoints_dir
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
model = load_model_from_hub(model_path, device=self.device)
|
| 330 |
+
|
| 331 |
+
return model, model # Return same object for both
|
| 332 |
+
|
| 333 |
+
def _cleanup_models(self):
|
| 334 |
+
"""Clean up loaded models and free memory"""
|
| 335 |
+
if self.sam2_predictor is not None:
|
| 336 |
+
del self.sam2_predictor
|
| 337 |
+
self.sam2_predictor = None
|
| 338 |
+
|
| 339 |
+
if self.matanyone_model is not None:
|
| 340 |
+
del self.matanyone_model
|
| 341 |
+
self.matanyone_model = None
|
| 342 |
+
|
| 343 |
+
if self.matanyone_core is not None:
|
| 344 |
+
del self.matanyone_core
|
| 345 |
+
self.matanyone_core = None
|
| 346 |
+
|
| 347 |
+
# Clear GPU cache
|
| 348 |
+
self.memory_manager.cleanup_gpu_memory()
|
| 349 |
+
gc.collect()
|
| 350 |
+
|
| 351 |
+
logger.debug("Model cleanup completed")
|
| 352 |
+
|
| 353 |
+
def _maybe_progress(self, progress: Optional[gr.Progress], value: float, desc: str):
|
| 354 |
+
"""Update progress if callback is available"""
|
| 355 |
+
if progress is not None:
|
| 356 |
+
try:
|
| 357 |
+
progress(value, desc=desc)
|
| 358 |
+
except Exception as e:
|
| 359 |
+
logger.debug(f"Progress update failed: {e}")
|
| 360 |
+
|
| 361 |
+
def get_model_info(self) -> Dict[str, Any]:
|
| 362 |
+
"""
|
| 363 |
+
Get information about loaded models
|
| 364 |
+
|
| 365 |
+
Returns:
|
| 366 |
+
Dict with model information and statistics
|
| 367 |
+
"""
|
| 368 |
+
info = {
|
| 369 |
+
'models_loaded': self.loading_stats['models_loaded'],
|
| 370 |
+
'sam2_loaded': self.sam2_predictor is not None,
|
| 371 |
+
'matanyone_loaded': self.matanyone_model is not None,
|
| 372 |
+
'device': str(self.device),
|
| 373 |
+
'loading_stats': self.loading_stats.copy()
|
| 374 |
+
}
|
| 375 |
+
|
| 376 |
+
if self.sam2_predictor is not None:
|
| 377 |
+
try:
|
| 378 |
+
info['sam2_model_type'] = type(self.sam2_predictor.model).__name__
|
| 379 |
+
except:
|
| 380 |
+
info['sam2_model_type'] = "Unknown"
|
| 381 |
+
|
| 382 |
+
if self.matanyone_model is not None:
|
| 383 |
+
try:
|
| 384 |
+
info['matanyone_model_type'] = type(self.matanyone_model).__name__
|
| 385 |
+
except:
|
| 386 |
+
info['matanyone_model_type'] = "Unknown"
|
| 387 |
+
|
| 388 |
+
return info
|
| 389 |
+
|
| 390 |
+
def validate_models(self) -> bool:
|
| 391 |
+
"""
|
| 392 |
+
Validate that models are properly loaded and functional
|
| 393 |
+
|
| 394 |
+
Returns:
|
| 395 |
+
bool: True if models are valid
|
| 396 |
+
"""
|
| 397 |
+
try:
|
| 398 |
+
# Basic validation
|
| 399 |
+
if not self.loading_stats['models_loaded']:
|
| 400 |
+
return False
|
| 401 |
+
|
| 402 |
+
if self.sam2_predictor is None or self.matanyone_model is None:
|
| 403 |
+
return False
|
| 404 |
+
|
| 405 |
+
# Try basic model operations
|
| 406 |
+
# This could include running a small test inference
|
| 407 |
+
logger.info("Model validation passed")
|
| 408 |
+
return True
|
| 409 |
+
|
| 410 |
+
except Exception as e:
|
| 411 |
+
logger.error(f"Model validation failed: {e}")
|
| 412 |
+
return False
|
| 413 |
+
|
| 414 |
+
def reload_models(self, progress: Optional[gr.Progress] = None) -> bool:
|
| 415 |
+
"""
|
| 416 |
+
Reload all models (useful for error recovery)
|
| 417 |
+
|
| 418 |
+
Args:
|
| 419 |
+
progress: Gradio progress callback
|
| 420 |
+
|
| 421 |
+
Returns:
|
| 422 |
+
bool: True if reload successful
|
| 423 |
+
"""
|
| 424 |
+
logger.info("Reloading models...")
|
| 425 |
+
self._cleanup_models()
|
| 426 |
+
self.loading_stats['models_loaded'] = False
|
| 427 |
+
|
| 428 |
+
return self.load_all_models(progress)
|
| 429 |
+
|
| 430 |
+
@property
|
| 431 |
+
def models_ready(self) -> bool:
|
| 432 |
+
"""Check if all models are loaded and ready"""
|
| 433 |
+
return (
|
| 434 |
+
self.loading_stats['models_loaded'] and
|
| 435 |
+
self.sam2_predictor is not None and
|
| 436 |
+
self.matanyone_model is not None
|
| 437 |
+
)
|