Create loaders/sam2_loader.py
Browse files- models/loaders/sam2_loader.py +219 -0
models/loaders/sam2_loader.py
ADDED
|
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
SAM2 Model Loader
|
| 4 |
+
Handles all SAM2 loading strategies with proper fallbacks
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import time
|
| 9 |
+
import logging
|
| 10 |
+
import traceback
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
from typing import Optional, Dict, Any
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
import numpy as np
|
| 16 |
+
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class SAM2Loader:
|
| 21 |
+
"""Dedicated loader for SAM2 models"""
|
| 22 |
+
|
| 23 |
+
def __init__(self, device: str = "cuda", cache_dir: str = "./checkpoints/sam2_cache"):
|
| 24 |
+
self.device = device
|
| 25 |
+
self.cache_dir = cache_dir
|
| 26 |
+
os.makedirs(self.cache_dir, exist_ok=True)
|
| 27 |
+
|
| 28 |
+
# Configure HF hub for spaces
|
| 29 |
+
os.environ["HF_HUB_DISABLE_SYMLINKS"] = "1"
|
| 30 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0"
|
| 31 |
+
|
| 32 |
+
self.model = None
|
| 33 |
+
self.model_id = None
|
| 34 |
+
self.load_time = 0.0
|
| 35 |
+
|
| 36 |
+
def load(self, model_size: str = "auto") -> Optional[Any]:
|
| 37 |
+
"""
|
| 38 |
+
Load SAM2 model with specified size
|
| 39 |
+
Args:
|
| 40 |
+
model_size: "tiny", "small", "base", "large", or "auto"
|
| 41 |
+
Returns:
|
| 42 |
+
Loaded model or None
|
| 43 |
+
"""
|
| 44 |
+
if model_size == "auto":
|
| 45 |
+
model_size = self._determine_optimal_size()
|
| 46 |
+
|
| 47 |
+
model_map = {
|
| 48 |
+
"tiny": "facebook/sam2.1-hiera-tiny",
|
| 49 |
+
"small": "facebook/sam2.1-hiera-small",
|
| 50 |
+
"base": "facebook/sam2.1-hiera-base-plus",
|
| 51 |
+
"large": "facebook/sam2.1-hiera-large",
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
self.model_id = model_map.get(model_size, model_map["tiny"])
|
| 55 |
+
logger.info(f"Loading SAM2 model: {self.model_id}")
|
| 56 |
+
|
| 57 |
+
# Try loading strategies in order
|
| 58 |
+
strategies = [
|
| 59 |
+
("official", self._load_official),
|
| 60 |
+
("transformers", self._load_transformers),
|
| 61 |
+
("fallback", self._load_fallback)
|
| 62 |
+
]
|
| 63 |
+
|
| 64 |
+
for strategy_name, strategy_func in strategies:
|
| 65 |
+
try:
|
| 66 |
+
logger.info(f"Trying SAM2 loading strategy: {strategy_name}")
|
| 67 |
+
start_time = time.time()
|
| 68 |
+
model = strategy_func()
|
| 69 |
+
if model:
|
| 70 |
+
self.load_time = time.time() - start_time
|
| 71 |
+
self.model = model
|
| 72 |
+
logger.info(f"SAM2 loaded successfully via {strategy_name} in {self.load_time:.2f}s")
|
| 73 |
+
return model
|
| 74 |
+
except Exception as e:
|
| 75 |
+
logger.error(f"SAM2 {strategy_name} strategy failed: {e}")
|
| 76 |
+
logger.debug(traceback.format_exc())
|
| 77 |
+
continue
|
| 78 |
+
|
| 79 |
+
logger.error("All SAM2 loading strategies failed")
|
| 80 |
+
return None
|
| 81 |
+
|
| 82 |
+
def _determine_optimal_size(self) -> str:
|
| 83 |
+
"""Determine optimal model size based on available memory"""
|
| 84 |
+
try:
|
| 85 |
+
if torch.cuda.is_available():
|
| 86 |
+
props = torch.cuda.get_device_properties(0)
|
| 87 |
+
vram_gb = props.total_memory / (1024**3)
|
| 88 |
+
|
| 89 |
+
if vram_gb < 4:
|
| 90 |
+
return "tiny"
|
| 91 |
+
elif vram_gb < 8:
|
| 92 |
+
return "small"
|
| 93 |
+
elif vram_gb < 12:
|
| 94 |
+
return "base"
|
| 95 |
+
else:
|
| 96 |
+
return "large"
|
| 97 |
+
except:
|
| 98 |
+
pass
|
| 99 |
+
return "tiny" # Conservative default
|
| 100 |
+
|
| 101 |
+
def _load_official(self) -> Optional[Any]:
|
| 102 |
+
"""Load using official SAM2 API"""
|
| 103 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 104 |
+
|
| 105 |
+
predictor = SAM2ImagePredictor.from_pretrained(
|
| 106 |
+
self.model_id,
|
| 107 |
+
cache_dir=self.cache_dir,
|
| 108 |
+
local_files_only=False,
|
| 109 |
+
trust_remote_code=True,
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
# Move to device and set to eval mode
|
| 113 |
+
if hasattr(predictor, "model"):
|
| 114 |
+
predictor.model = predictor.model.to(self.device)
|
| 115 |
+
predictor.model.eval()
|
| 116 |
+
|
| 117 |
+
# Set device attribute for the predictor
|
| 118 |
+
if hasattr(predictor, "device"):
|
| 119 |
+
predictor.device = self.device
|
| 120 |
+
|
| 121 |
+
return predictor
|
| 122 |
+
|
| 123 |
+
def _load_transformers(self) -> Optional[Any]:
|
| 124 |
+
"""Load using transformers library"""
|
| 125 |
+
from transformers import AutoModel, AutoProcessor
|
| 126 |
+
|
| 127 |
+
dtype = torch.float16 if "cuda" in self.device else torch.float32
|
| 128 |
+
|
| 129 |
+
model = AutoModel.from_pretrained(
|
| 130 |
+
self.model_id,
|
| 131 |
+
trust_remote_code=True,
|
| 132 |
+
torch_dtype=dtype,
|
| 133 |
+
cache_dir=self.cache_dir
|
| 134 |
+
)
|
| 135 |
+
model = model.to(self.device)
|
| 136 |
+
model.eval()
|
| 137 |
+
|
| 138 |
+
try:
|
| 139 |
+
processor = AutoProcessor.from_pretrained(
|
| 140 |
+
self.model_id,
|
| 141 |
+
cache_dir=self.cache_dir
|
| 142 |
+
)
|
| 143 |
+
except:
|
| 144 |
+
processor = None
|
| 145 |
+
|
| 146 |
+
# Wrap to match expected API
|
| 147 |
+
class SAM2TransformersWrapper:
|
| 148 |
+
def __init__(self, model, processor, device):
|
| 149 |
+
self.model = model
|
| 150 |
+
self.processor = processor
|
| 151 |
+
self.device = device
|
| 152 |
+
self.current_image = None
|
| 153 |
+
|
| 154 |
+
def set_image(self, image):
|
| 155 |
+
"""Store image for processing"""
|
| 156 |
+
self.current_image = image
|
| 157 |
+
# TODO: Actually encode image with model here
|
| 158 |
+
|
| 159 |
+
def predict(self, point_coords=None, point_labels=None, box=None, **kwargs):
|
| 160 |
+
"""Generate masks from prompts"""
|
| 161 |
+
# TODO: Implement actual prediction
|
| 162 |
+
if self.current_image is not None:
|
| 163 |
+
h, w = self.current_image.shape[:2]
|
| 164 |
+
else:
|
| 165 |
+
h, w = 512, 512
|
| 166 |
+
|
| 167 |
+
# For now, return dummy mask
|
| 168 |
+
return {
|
| 169 |
+
"masks": np.ones((1, h, w), dtype=np.float32),
|
| 170 |
+
"scores": np.array([0.9]),
|
| 171 |
+
"logits": np.ones((1, h, w), dtype=np.float32),
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
return SAM2TransformersWrapper(model, processor, self.device)
|
| 175 |
+
|
| 176 |
+
def _load_fallback(self) -> Optional[Any]:
|
| 177 |
+
"""Create fallback predictor for testing"""
|
| 178 |
+
|
| 179 |
+
class FallbackSAM2:
|
| 180 |
+
def __init__(self, device):
|
| 181 |
+
self.device = device
|
| 182 |
+
self.current_image = None
|
| 183 |
+
|
| 184 |
+
def set_image(self, image):
|
| 185 |
+
self.current_image = image
|
| 186 |
+
|
| 187 |
+
def predict(self, point_coords=None, point_labels=None, box=None, **kwargs):
|
| 188 |
+
"""Return full mask as fallback"""
|
| 189 |
+
if self.current_image is not None:
|
| 190 |
+
h, w = self.current_image.shape[:2]
|
| 191 |
+
else:
|
| 192 |
+
h, w = 512, 512
|
| 193 |
+
|
| 194 |
+
return {
|
| 195 |
+
"masks": np.ones((1, h, w), dtype=np.float32),
|
| 196 |
+
"scores": np.array([0.5]),
|
| 197 |
+
"logits": np.ones((1, h, w), dtype=np.float32),
|
| 198 |
+
}
|
| 199 |
+
|
| 200 |
+
logger.warning("Using fallback SAM2 (no real segmentation)")
|
| 201 |
+
return FallbackSAM2(self.device)
|
| 202 |
+
|
| 203 |
+
def cleanup(self):
|
| 204 |
+
"""Clean up resources"""
|
| 205 |
+
if self.model:
|
| 206 |
+
del self.model
|
| 207 |
+
self.model = None
|
| 208 |
+
if torch.cuda.is_available():
|
| 209 |
+
torch.cuda.empty_cache()
|
| 210 |
+
|
| 211 |
+
def get_info(self) -> Dict[str, Any]:
|
| 212 |
+
"""Get loader information"""
|
| 213 |
+
return {
|
| 214 |
+
"loaded": self.model is not None,
|
| 215 |
+
"model_id": self.model_id,
|
| 216 |
+
"device": self.device,
|
| 217 |
+
"load_time": self.load_time,
|
| 218 |
+
"model_type": type(self.model).__name__ if self.model else None
|
| 219 |
+
}
|