Create utils/refinement.py
Browse files- utils/refinement.py +167 -0
utils/refinement.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
utils.refinement
|
| 4 |
+
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 5 |
+
Single-frame mask refinement for BackgroundFX Pro.
|
| 6 |
+
|
| 7 |
+
Public API
|
| 8 |
+
----------
|
| 9 |
+
refine_mask_hq(image, mask, matanyone_processor, fallback_enabled=True) -> np.ndarray
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
from __future__ import annotations
|
| 13 |
+
from typing import Any, Tuple, Optional
|
| 14 |
+
import logging, cv2, torch, numpy as np
|
| 15 |
+
|
| 16 |
+
log = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
# Quality thresholds (same as before)
|
| 19 |
+
MIN_AREA_RATIO = 0.015
|
| 20 |
+
MAX_AREA_RATIO = 0.97
|
| 21 |
+
|
| 22 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 23 |
+
# Public
|
| 24 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 25 |
+
__all__ = ["refine_mask_hq"]
|
| 26 |
+
|
| 27 |
+
def refine_mask_hq(
|
| 28 |
+
image: np.ndarray,
|
| 29 |
+
mask: np.ndarray,
|
| 30 |
+
matanyone_processor: Any,
|
| 31 |
+
fallback_enabled: bool = True,
|
| 32 |
+
) -> np.ndarray:
|
| 33 |
+
"""
|
| 34 |
+
1) Try MatAnyOne high-quality refinement.
|
| 35 |
+
2) Otherwise OpenCV βenhancedβ filter.
|
| 36 |
+
3) GrabCut and saliency fallbacks.
|
| 37 |
+
Always returns uint8 mask (0/255).
|
| 38 |
+
"""
|
| 39 |
+
mask = _process_mask(mask)
|
| 40 |
+
|
| 41 |
+
# 1 β MatAnyOne
|
| 42 |
+
if matanyone_processor is not None:
|
| 43 |
+
try:
|
| 44 |
+
refined = _matanyone_refine(image, mask, matanyone_processor)
|
| 45 |
+
if refined is not None and _validate_mask_quality(refined, image.shape[:2]):
|
| 46 |
+
return refined
|
| 47 |
+
log.warning("MatAnyOne produced poor mask; fallback")
|
| 48 |
+
except Exception as e:
|
| 49 |
+
log.warning(f"MatAnyOne error: {e}")
|
| 50 |
+
|
| 51 |
+
# 2 β OpenCV βenhancedβ bilateral+guided+MORPH
|
| 52 |
+
try:
|
| 53 |
+
refined = _opencv_enhance(image, mask)
|
| 54 |
+
if _validate_mask_quality(refined, image.shape[:2]):
|
| 55 |
+
return refined
|
| 56 |
+
except Exception as e:
|
| 57 |
+
log.debug(f"OpenCV enhance error: {e}")
|
| 58 |
+
|
| 59 |
+
# 3 β GrabCut + saliency double-fallback
|
| 60 |
+
try:
|
| 61 |
+
gc = _refine_with_grabcut(image, mask)
|
| 62 |
+
if _validate_mask_quality(gc, image.shape[:2]):
|
| 63 |
+
return gc
|
| 64 |
+
sal = _refine_with_saliency(image, mask)
|
| 65 |
+
if _validate_mask_quality(sal, image.shape[:2]):
|
| 66 |
+
return sal
|
| 67 |
+
except Exception as e:
|
| 68 |
+
log.debug(f"GrabCut/saliency fallback error: {e}")
|
| 69 |
+
|
| 70 |
+
# last resort
|
| 71 |
+
return mask if fallback_enabled else _opencv_enhance(image, mask)
|
| 72 |
+
|
| 73 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 74 |
+
# MatAnyOne wrapper (safe)
|
| 75 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 76 |
+
def _matanyone_refine(img, mask, proc) -> Optional[np.ndarray]:
|
| 77 |
+
if not (hasattr(proc, "step") and hasattr(proc, "output_prob_to_mask")):
|
| 78 |
+
return None
|
| 79 |
+
# image tensor (C,H,W) float32 0-1
|
| 80 |
+
anp = img.astype(np.float32)
|
| 81 |
+
if anp.max() > 1: anp /= 255.0
|
| 82 |
+
anp = np.transpose(anp, (2,0,1))
|
| 83 |
+
img_t = torch.from_numpy(anp).unsqueeze(0).to(proc.device if hasattr(proc,"device") else "cpu")
|
| 84 |
+
mask_f = mask.astype(np.float32)/255.0
|
| 85 |
+
mask_t = torch.from_numpy(mask_f).unsqueeze(0).to(img_t.device)
|
| 86 |
+
|
| 87 |
+
with torch.no_grad():
|
| 88 |
+
prob = proc.step(img_t, mask_t, objects=[1])
|
| 89 |
+
m = proc.output_prob_to_mask(prob).squeeze().cpu().numpy()
|
| 90 |
+
if m.max() <= 1: m *= 255
|
| 91 |
+
return m.astype(np.uint8)
|
| 92 |
+
|
| 93 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 94 |
+
# OpenCV enhanced filter chain
|
| 95 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 96 |
+
def _opencv_enhance(img, mask):
|
| 97 |
+
if mask.ndim == 3: mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 98 |
+
if mask.max()<=1: mask = (mask*255).astype(np.uint8)
|
| 99 |
+
m = cv2.bilateralFilter(mask, 9, 75, 75)
|
| 100 |
+
m = _guided_filter(img, m, r=8, eps=0.2)
|
| 101 |
+
m = cv2.morphologyEx(m, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5)))
|
| 102 |
+
m = cv2.morphologyEx(m, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)))
|
| 103 |
+
m = cv2.GaussianBlur(m,(3,3),0.8)
|
| 104 |
+
_,m = cv2.threshold(m,127,255,cv2.THRESH_BINARY)
|
| 105 |
+
return m
|
| 106 |
+
|
| 107 |
+
def _guided_filter(guide, mask, r=8, eps=0.2):
|
| 108 |
+
g = cv2.cvtColor(guide, cv2.COLOR_BGR2GRAY).astype(np.float32)/255.0
|
| 109 |
+
m = mask.astype(np.float32)/255.0
|
| 110 |
+
k = 2*r+1
|
| 111 |
+
mean_g = cv2.boxFilter(g, -1, (k,k))
|
| 112 |
+
mean_m = cv2.boxFilter(m, -1, (k,k))
|
| 113 |
+
corr_gm = cv2.boxFilter(g*m, -1, (k,k))
|
| 114 |
+
cov = corr_gm - mean_g*mean_m
|
| 115 |
+
var_g = cv2.boxFilter(g*g, -1, (k,k)) - mean_g*mean_g
|
| 116 |
+
a = cov/(var_g+eps)
|
| 117 |
+
b = mean_m - a*mean_g
|
| 118 |
+
mean_a = cv2.boxFilter(a, -1, (k,k))
|
| 119 |
+
mean_b = cv2.boxFilter(b, -1, (k,k))
|
| 120 |
+
out = (mean_a*g+mean_b)*255
|
| 121 |
+
return out.astype(np.uint8)
|
| 122 |
+
|
| 123 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 124 |
+
# GrabCut & saliency fallbacks
|
| 125 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 126 |
+
def _refine_with_grabcut(img, seed):
|
| 127 |
+
h,w = img.shape[:2]
|
| 128 |
+
gc = np.full((h,w), cv2.GC_PR_BGD, np.uint8)
|
| 129 |
+
gc[seed>200] = cv2.GC_FGD
|
| 130 |
+
rect = (w//4, h//6, w//2, int(h*0.7))
|
| 131 |
+
bgd,fgd = np.zeros((1,65),np.float64), np.zeros((1,65),np.float64)
|
| 132 |
+
cv2.grabCut(img, gc, rect, bgd, fgd, 3, cv2.GC_INIT_WITH_MASK)
|
| 133 |
+
return np.where((gc==cv2.GC_FGD)|(gc==cv2.GC_PR_FGD),255,0).astype(np.uint8)
|
| 134 |
+
|
| 135 |
+
def _refine_with_saliency(img, seed):
|
| 136 |
+
sal = _compute_saliency(img)
|
| 137 |
+
if sal is None: return seed
|
| 138 |
+
high = (sal>0.6).astype(np.uint8)*255
|
| 139 |
+
cy,cx = img.shape[0]//2, img.shape[1]//2
|
| 140 |
+
if np.any(seed>127):
|
| 141 |
+
ys,xs = np.where(seed>127); cy,cx=int(np.mean(ys)),int(np.mean(xs))
|
| 142 |
+
ff = high.copy(); cv2.floodFill(ff,None,(cx,cy),255,loDiff=5,upDiff=5)
|
| 143 |
+
return ff
|
| 144 |
+
|
| 145 |
+
def _compute_saliency(img):
|
| 146 |
+
try:
|
| 147 |
+
if hasattr(cv2,"saliency"):
|
| 148 |
+
s=cv2.saliency.StaticSaliencySpectralResidual_create()
|
| 149 |
+
ok,sm=s.computeSaliency(img)
|
| 150 |
+
if ok: return (sm-sm.min())/max(1e-6,sm.max()-sm.min())
|
| 151 |
+
except Exception: pass
|
| 152 |
+
return None
|
| 153 |
+
|
| 154 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 155 |
+
# Helpers
|
| 156 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 157 |
+
def _process_mask(mask):
|
| 158 |
+
if mask.ndim==3: mask=cv2.cvtColor(mask,cv2.COLOR_BGR2GRAY)
|
| 159 |
+
if mask.dtype!=np.uint8:
|
| 160 |
+
mask = (mask*255).astype(np.uint8) if mask.max()<=1 else mask.astype(np.uint8)
|
| 161 |
+
_,mask=cv2.threshold(mask,127,255,cv2.THRESH_BINARY)
|
| 162 |
+
return mask
|
| 163 |
+
|
| 164 |
+
def _validate_mask_quality(mask, shape: Tuple[int,int]) -> bool:
|
| 165 |
+
h,w = shape
|
| 166 |
+
ratio = np.sum(mask>127)/(h*w)
|
| 167 |
+
return MIN_AREA_RATIO <= ratio <= MAX_AREA_RATIO
|