Update app.py
Browse files
app.py
CHANGED
|
@@ -6,10 +6,13 @@
|
|
| 6 |
|
| 7 |
import early_env # <<< must be FIRST
|
| 8 |
|
| 9 |
-
import os, time,
|
| 10 |
-
from pathlib import Path
|
| 11 |
from typing import Optional, Dict, Any, Callable, Tuple
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
# 1) CSP-safe Gradio env
|
| 14 |
os.environ['GRADIO_ALLOW_FLAGGING'] = 'never'
|
| 15 |
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
|
|
@@ -19,15 +22,15 @@
|
|
| 19 |
# 2) Gradio schema patch
|
| 20 |
try:
|
| 21 |
import gradio_client.utils as gc_utils
|
| 22 |
-
|
| 23 |
-
def
|
| 24 |
if not isinstance(schema, dict):
|
| 25 |
if isinstance(schema, bool): return "boolean"
|
| 26 |
if isinstance(schema, str): return "string"
|
| 27 |
if isinstance(schema, (int, float)): return "number"
|
| 28 |
return "string"
|
| 29 |
-
return
|
| 30 |
-
gc_utils.get_type =
|
| 31 |
except Exception:
|
| 32 |
pass
|
| 33 |
|
|
@@ -48,7 +51,7 @@ def patched_get_type(schema):
|
|
| 48 |
|
| 49 |
# Background helpers
|
| 50 |
from utils import PROFESSIONAL_BACKGROUNDS, validate_video_file, create_professional_background
|
| 51 |
-
# Gradient helper (add
|
| 52 |
try:
|
| 53 |
from utils import create_gradient_background
|
| 54 |
except Exception:
|
|
@@ -61,20 +64,18 @@ def _to_rgb(c):
|
|
| 61 |
return tuple(int(x) for x in c)
|
| 62 |
if isinstance(c, str) and c.startswith("#") and len(c) == 7:
|
| 63 |
return tuple(int(c[i:i+2], 16) for i in (1,3,5))
|
| 64 |
-
return (255,255,255)
|
| 65 |
start = _to_rgb(spec.get("start", "#222222"))
|
| 66 |
end = _to_rgb(spec.get("end", "#888888"))
|
| 67 |
angle = float(spec.get("angle_deg", 0))
|
| 68 |
-
# build vertical then rotate
|
| 69 |
bg = np.zeros((height, width, 3), np.uint8)
|
| 70 |
for y in range(height):
|
| 71 |
-
t = y / max(1, height-1)
|
| 72 |
-
r = int(start[0]*(1-t) + end[0]*t)
|
| 73 |
-
g = int(start[1]*(1-t) + end[1]*t)
|
| 74 |
-
b = int(start[2]*(1-t) + end[2]*t)
|
| 75 |
-
bg[y
|
| 76 |
-
|
| 77 |
-
center = (width/2, height/2)
|
| 78 |
rot = cv2.getRotationMatrix2D(center, angle, 1.0)
|
| 79 |
return cv2.warpAffine(bg, rot, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
|
| 80 |
|
|
@@ -110,20 +111,25 @@ def process(self, image, mask, **kwargs):
|
|
| 110 |
import numpy as np
|
| 111 |
import cv2
|
| 112 |
from PIL import Image
|
|
|
|
| 113 |
|
| 114 |
PREVIEW_W, PREVIEW_H = 640, 360 # 16:9
|
| 115 |
|
| 116 |
-
def _hex_to_rgb(x: str) -> Tuple[int,int,int]:
|
| 117 |
-
x = x.strip()
|
| 118 |
if x.startswith("#") and len(x) == 7:
|
| 119 |
-
return tuple(int(x[i:i+2], 16) for i in (1,3,5))
|
| 120 |
-
return (255,255,255)
|
| 121 |
|
| 122 |
def _np_to_pil(arr: np.ndarray) -> Image.Image:
|
| 123 |
if arr.dtype != np.uint8:
|
| 124 |
-
arr = arr.clip(0,255).astype(np.uint8)
|
| 125 |
return Image.fromarray(arr)
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
# ---------- main app ----------
|
| 128 |
class VideoBackgroundApp:
|
| 129 |
def __init__(self):
|
|
@@ -134,9 +140,12 @@ def __init__(self):
|
|
| 134 |
self.audio_proc = AudioProcessor()
|
| 135 |
self.models_loaded = False
|
| 136 |
self.core_processor: Optional[CoreVideoProcessor] = None
|
|
|
|
|
|
|
|
|
|
| 137 |
logger.info("VideoBackgroundApp initialized (device=%s)", self.device_mgr.get_optimal_device())
|
| 138 |
|
| 139 |
-
def load_models(self, progress_callback: Optional[Callable]=None) -> str:
|
| 140 |
logger.info("Loading models (CSP-safe)…")
|
| 141 |
try:
|
| 142 |
sam2, matanyone = self.model_loader.load_all_models(progress_callback=progress_callback)
|
|
@@ -176,7 +185,8 @@ def preview_preset(self, preset_key: str) -> Image.Image:
|
|
| 176 |
return _np_to_pil(bg)
|
| 177 |
|
| 178 |
def preview_upload(self, file) -> Optional[Image.Image]:
|
| 179 |
-
if file is None:
|
|
|
|
| 180 |
try:
|
| 181 |
img = Image.open(file.name).convert("RGB")
|
| 182 |
img = img.resize((PREVIEW_W, PREVIEW_H), Image.LANCZOS)
|
|
@@ -187,35 +197,173 @@ def preview_upload(self, file) -> Optional[Image.Image]:
|
|
| 187 |
|
| 188 |
def preview_gradient(self, gtype: str, color1: str, color2: str, angle: int) -> Image.Image:
|
| 189 |
spec = {
|
| 190 |
-
"type": gtype.lower(), # "linear" or "radial" (linear in fallback)
|
| 191 |
-
"start": _hex_to_rgb(color1),
|
| 192 |
-
"end": _hex_to_rgb(color2),
|
| 193 |
-
"angle_deg": float(angle),
|
| 194 |
}
|
| 195 |
bg = create_gradient_background(spec, PREVIEW_W, PREVIEW_H)
|
| 196 |
return _np_to_pil(bg)
|
| 197 |
|
| 198 |
-
|
|
|
|
| 199 |
"""
|
| 200 |
-
|
|
|
|
| 201 |
"""
|
|
|
|
|
|
|
|
|
|
| 202 |
try:
|
| 203 |
-
from diffusers import StableDiffusionPipeline
|
| 204 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
model_id = os.environ.get("BGFX_T2I_MODEL", "stabilityai/stable-diffusion-2-1")
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
pipe = pipe.to(device)
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
tmp_path = f"/tmp/ai_bg_{int(time.time())}.png"
|
| 214 |
img.save(tmp_path)
|
| 215 |
-
|
|
|
|
| 216 |
except Exception as e:
|
| 217 |
-
logger.
|
| 218 |
-
return None, None, f"AI generation
|
| 219 |
|
| 220 |
# ---- PROCESS VIDEO ----
|
| 221 |
def process_video(
|
|
@@ -233,6 +381,9 @@ def process_video(
|
|
| 233 |
if not self.models_loaded:
|
| 234 |
return None, "Models not loaded yet"
|
| 235 |
|
|
|
|
|
|
|
|
|
|
| 236 |
logger.info("process_video called (video=%s, source=%s, preset=%s, file=%s, grad=%s, ai=%s)",
|
| 237 |
video, bg_source, preset_key, getattr(custom_bg_file, "name", None) if custom_bg_file else None,
|
| 238 |
{"type": grad_type, "c1": grad_color1, "c2": grad_color2, "angle": grad_angle},
|
|
@@ -247,10 +398,9 @@ def process_video(
|
|
| 247 |
return None, "Invalid or unreadable video file"
|
| 248 |
|
| 249 |
# Build bg_config based on source
|
| 250 |
-
bg_cfg: Dict[str, Any]
|
| 251 |
src = (bg_source or "Preset").lower()
|
| 252 |
if src == "upload" and custom_bg_file is not None:
|
| 253 |
-
bg_cfg = {"custom_path": custom_bg_file.name}
|
| 254 |
elif src == "gradient":
|
| 255 |
bg_cfg = {
|
| 256 |
"gradient": {
|
|
@@ -311,9 +461,12 @@ def create_csp_safe_gradio():
|
|
| 311 |
|
| 312 |
# PRESET
|
| 313 |
preset_choices = list(PROFESSIONAL_BACKGROUNDS.keys())
|
| 314 |
-
|
|
|
|
|
|
|
| 315 |
# UPLOAD
|
| 316 |
custom_bg = gr.File(label="Custom Background (Image)", file_types=["image"], visible=False)
|
|
|
|
| 317 |
# GRADIENT
|
| 318 |
grad_type = gr.Dropdown(choices=["Linear", "Radial"], value="Linear", label="Gradient Type", visible=False)
|
| 319 |
grad_color1 = gr.ColorPicker(value="#222222", label="Start Color", visible=False)
|
|
@@ -339,48 +492,67 @@ def create_csp_safe_gradio():
|
|
| 339 |
# ---------- UI wiring ----------
|
| 340 |
|
| 341 |
# background source → show/hide controls
|
| 342 |
-
def
|
| 343 |
src = (src or "Preset").lower()
|
| 344 |
return (
|
| 345 |
-
gr.update(visible=(src=="preset")),
|
| 346 |
-
gr.update(visible=(src=="upload")),
|
| 347 |
-
gr.update(visible=(src=="gradient")),
|
| 348 |
-
gr.update(visible=(src=="gradient")),
|
| 349 |
-
gr.update(visible=(src=="gradient")),
|
| 350 |
-
gr.update(visible=(src=="gradient")),
|
| 351 |
-
gr.update(visible=(src=="ai generate")),
|
| 352 |
-
gr.update(visible=(src=="ai generate")),
|
| 353 |
-
gr.update(visible=(src=="ai generate")),
|
| 354 |
-
gr.update(visible=(src=="ai generate")),
|
| 355 |
-
gr.update(visible=(src=="ai generate")),
|
| 356 |
)
|
| 357 |
bg_source.change(
|
| 358 |
-
fn=
|
| 359 |
inputs=[bg_source],
|
| 360 |
outputs=[preset_key, custom_bg, grad_type, grad_color1, grad_color2, grad_angle, ai_prompt, ai_seed, ai_size, ai_go, ai_status],
|
| 361 |
)
|
| 362 |
|
| 363 |
-
#
|
| 364 |
-
def
|
| 365 |
-
return
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
|
| 372 |
-
|
| 373 |
-
|
|
|
|
| 374 |
for comp in (grad_type, grad_color1, grad_color2, grad_angle):
|
| 375 |
-
comp.change(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 376 |
|
| 377 |
# AI generate
|
| 378 |
def ai_generate(prompt, seed, size):
|
| 379 |
try:
|
| 380 |
-
w,h = map(int, size.split("x"))
|
| 381 |
except Exception:
|
| 382 |
-
w,h = PREVIEW_W, PREVIEW_H
|
| 383 |
-
img, path, msg = app.ai_generate_background(
|
|
|
|
|
|
|
|
|
|
| 384 |
return img, (path or None), msg
|
| 385 |
ai_go.click(fn=ai_generate, inputs=[ai_prompt, ai_seed, ai_size], outputs=[bg_preview, ai_bg_path_state, ai_status])
|
| 386 |
|
|
@@ -388,7 +560,6 @@ def ai_generate(prompt, seed, size):
|
|
| 388 |
def safe_load():
|
| 389 |
msg = app.load_models()
|
| 390 |
logger.info("UI: models loaded")
|
| 391 |
-
# set initial preview (preset default)
|
| 392 |
return msg, app.preview_preset(preset_key.value if hasattr(preset_key, "value") else "office")
|
| 393 |
btn_load.click(fn=safe_load, outputs=[status, bg_preview])
|
| 394 |
|
|
|
|
| 6 |
|
| 7 |
import early_env # <<< must be FIRST
|
| 8 |
|
| 9 |
+
import os, time, math
|
|
|
|
| 10 |
from typing import Optional, Dict, Any, Callable, Tuple
|
| 11 |
|
| 12 |
+
# Prefer a writable cache on HF/Spaces
|
| 13 |
+
os.environ.setdefault("HF_HOME", "/tmp/hf")
|
| 14 |
+
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1")
|
| 15 |
+
|
| 16 |
# 1) CSP-safe Gradio env
|
| 17 |
os.environ['GRADIO_ALLOW_FLAGGING'] = 'never'
|
| 18 |
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
|
|
|
|
| 22 |
# 2) Gradio schema patch
|
| 23 |
try:
|
| 24 |
import gradio_client.utils as gc_utils
|
| 25 |
+
_orig_get_type = gc_utils.get_type
|
| 26 |
+
def _patched_get_type(schema):
|
| 27 |
if not isinstance(schema, dict):
|
| 28 |
if isinstance(schema, bool): return "boolean"
|
| 29 |
if isinstance(schema, str): return "string"
|
| 30 |
if isinstance(schema, (int, float)): return "number"
|
| 31 |
return "string"
|
| 32 |
+
return _orig_get_type(schema)
|
| 33 |
+
gc_utils.get_type = _patched_get_type
|
| 34 |
except Exception:
|
| 35 |
pass
|
| 36 |
|
|
|
|
| 51 |
|
| 52 |
# Background helpers
|
| 53 |
from utils import PROFESSIONAL_BACKGROUNDS, validate_video_file, create_professional_background
|
| 54 |
+
# Gradient helper (add to utils; fallback here for preview only if missing)
|
| 55 |
try:
|
| 56 |
from utils import create_gradient_background
|
| 57 |
except Exception:
|
|
|
|
| 64 |
return tuple(int(x) for x in c)
|
| 65 |
if isinstance(c, str) and c.startswith("#") and len(c) == 7:
|
| 66 |
return tuple(int(c[i:i+2], 16) for i in (1,3,5))
|
| 67 |
+
return (255, 255, 255)
|
| 68 |
start = _to_rgb(spec.get("start", "#222222"))
|
| 69 |
end = _to_rgb(spec.get("end", "#888888"))
|
| 70 |
angle = float(spec.get("angle_deg", 0))
|
|
|
|
| 71 |
bg = np.zeros((height, width, 3), np.uint8)
|
| 72 |
for y in range(height):
|
| 73 |
+
t = y / max(1, height - 1)
|
| 74 |
+
r = int(start[0] * (1 - t) + end[0] * t)
|
| 75 |
+
g = int(start[1] * (1 - t) + end[1] * t)
|
| 76 |
+
b = int(start[2] * (1 - t) + end[2] * t)
|
| 77 |
+
bg[y, :] = (r, g, b)
|
| 78 |
+
center = (width / 2, height / 2)
|
|
|
|
| 79 |
rot = cv2.getRotationMatrix2D(center, angle, 1.0)
|
| 80 |
return cv2.warpAffine(bg, rot, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
|
| 81 |
|
|
|
|
| 111 |
import numpy as np
|
| 112 |
import cv2
|
| 113 |
from PIL import Image
|
| 114 |
+
from typing import Tuple
|
| 115 |
|
| 116 |
PREVIEW_W, PREVIEW_H = 640, 360 # 16:9
|
| 117 |
|
| 118 |
+
def _hex_to_rgb(x: str) -> Tuple[int, int, int]:
|
| 119 |
+
x = (x or "").strip()
|
| 120 |
if x.startswith("#") and len(x) == 7:
|
| 121 |
+
return tuple(int(x[i:i+2], 16) for i in (1, 3, 5))
|
| 122 |
+
return (255, 255, 255)
|
| 123 |
|
| 124 |
def _np_to_pil(arr: np.ndarray) -> Image.Image:
|
| 125 |
if arr.dtype != np.uint8:
|
| 126 |
+
arr = arr.clip(0, 255).astype(np.uint8)
|
| 127 |
return Image.fromarray(arr)
|
| 128 |
|
| 129 |
+
def _div8(n: int) -> int:
|
| 130 |
+
# Ensure sizes are multiples of 8 for SD/VAEs
|
| 131 |
+
return int(math.floor(max(64, n) / 8.0) * 8)
|
| 132 |
+
|
| 133 |
# ---------- main app ----------
|
| 134 |
class VideoBackgroundApp:
|
| 135 |
def __init__(self):
|
|
|
|
| 140 |
self.audio_proc = AudioProcessor()
|
| 141 |
self.models_loaded = False
|
| 142 |
self.core_processor: Optional[CoreVideoProcessor] = None
|
| 143 |
+
# Text-to-Image pipeline cache
|
| 144 |
+
self.t2i_pipe = None
|
| 145 |
+
self.t2i_model_id = None
|
| 146 |
logger.info("VideoBackgroundApp initialized (device=%s)", self.device_mgr.get_optimal_device())
|
| 147 |
|
| 148 |
+
def load_models(self, progress_callback: Optional[Callable] = None) -> str:
|
| 149 |
logger.info("Loading models (CSP-safe)…")
|
| 150 |
try:
|
| 151 |
sam2, matanyone = self.model_loader.load_all_models(progress_callback=progress_callback)
|
|
|
|
| 185 |
return _np_to_pil(bg)
|
| 186 |
|
| 187 |
def preview_upload(self, file) -> Optional[Image.Image]:
|
| 188 |
+
if file is None:
|
| 189 |
+
return None
|
| 190 |
try:
|
| 191 |
img = Image.open(file.name).convert("RGB")
|
| 192 |
img = img.resize((PREVIEW_W, PREVIEW_H), Image.LANCZOS)
|
|
|
|
| 197 |
|
| 198 |
def preview_gradient(self, gtype: str, color1: str, color2: str, angle: int) -> Image.Image:
|
| 199 |
spec = {
|
| 200 |
+
"type": (gtype or "linear").lower(), # "linear" or "radial" (linear in fallback)
|
| 201 |
+
"start": _hex_to_rgb(color1 or "#222222"),
|
| 202 |
+
"end": _hex_to_rgb(color2 or "#888888"),
|
| 203 |
+
"angle_deg": float(angle or 0),
|
| 204 |
}
|
| 205 |
bg = create_gradient_background(spec, PREVIEW_W, PREVIEW_H)
|
| 206 |
return _np_to_pil(bg)
|
| 207 |
|
| 208 |
+
# ---- AI BG: lazy-load + reuse pipe ----
|
| 209 |
+
def _ensure_t2i(self):
|
| 210 |
"""
|
| 211 |
+
Choose and load a text-to-image pipeline once, with memory-efficient settings.
|
| 212 |
+
Returns (pipe, model_id, msg)
|
| 213 |
"""
|
| 214 |
+
if self.t2i_pipe is not None:
|
| 215 |
+
return self.t2i_pipe, self.t2i_model_id, "AI generator ready"
|
| 216 |
+
|
| 217 |
try:
|
|
|
|
| 218 |
import torch
|
| 219 |
+
from diffusers import StableDiffusionPipeline, AutoPipelineForText2Image
|
| 220 |
+
except Exception as e:
|
| 221 |
+
return None, None, f"AI generation unavailable (missing deps): {e}"
|
| 222 |
+
|
| 223 |
+
# Heuristic: prefer fast/light models when VRAM is small
|
| 224 |
+
token = os.environ.get("HF_TOKEN") or os.environ.get("HUGGING_FACE_HUB_TOKEN")
|
| 225 |
+
device = "cuda" if getattr(torch, "cuda", None) and torch.cuda.is_available() else "cpu"
|
| 226 |
+
|
| 227 |
+
vram_gb = None
|
| 228 |
+
try:
|
| 229 |
+
vram_gb = self.device_mgr.get_device_memory_gb()
|
| 230 |
+
except Exception:
|
| 231 |
+
pass
|
| 232 |
+
|
| 233 |
+
# Prefer SD-Turbo if GPU and small VRAM; SDXL-Turbo if large VRAM; fallback to SD 2.1 on CPU
|
| 234 |
+
if device == "cuda":
|
| 235 |
+
if vram_gb and vram_gb >= 12:
|
| 236 |
+
model_id = os.environ.get("BGFX_T2I_MODEL", "stabilityai/sdxl-turbo")
|
| 237 |
+
else:
|
| 238 |
+
model_id = os.environ.get("BGFX_T2I_MODEL", "stabilityai/sd-turbo")
|
| 239 |
+
else:
|
| 240 |
+
# CPU-friendly (still heavy): classic SD 2.1
|
| 241 |
model_id = os.environ.get("BGFX_T2I_MODEL", "stabilityai/stable-diffusion-2-1")
|
| 242 |
+
|
| 243 |
+
logger.info(f"Loading text-to-image model: {model_id} (device={device}, vram={vram_gb} GB)")
|
| 244 |
+
|
| 245 |
+
dtype = torch.float16 if device == "cuda" else torch.float32
|
| 246 |
+
|
| 247 |
+
pipe = None
|
| 248 |
+
err = None
|
| 249 |
+
try:
|
| 250 |
+
# Newer unified API handles sd-turbo and sdxl-turbo too
|
| 251 |
+
pipe = AutoPipelineForText2Image.from_pretrained(
|
| 252 |
+
model_id,
|
| 253 |
+
torch_dtype=dtype,
|
| 254 |
+
use_safetensors=True,
|
| 255 |
+
token=token
|
| 256 |
+
)
|
| 257 |
+
except Exception as e1:
|
| 258 |
+
err = e1
|
| 259 |
+
try:
|
| 260 |
+
# Fallback to classic pipeline (works for sd/stable-diffusion-2-1)
|
| 261 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 262 |
+
model_id,
|
| 263 |
+
torch_dtype=dtype,
|
| 264 |
+
use_safetensors=True,
|
| 265 |
+
safety_checker=None, # disable to avoid false positives for office backgrounds
|
| 266 |
+
feature_extractor=None,
|
| 267 |
+
use_auth_token=token # legacy name
|
| 268 |
+
)
|
| 269 |
+
except Exception as e2:
|
| 270 |
+
return None, None, f"AI model load failed: {e1} / {e2}"
|
| 271 |
+
|
| 272 |
+
# Memory/perf knobs
|
| 273 |
+
try:
|
| 274 |
+
pipe.set_progress_bar_config(disable=True)
|
| 275 |
+
except Exception:
|
| 276 |
+
pass
|
| 277 |
+
try:
|
| 278 |
+
pipe.enable_attention_slicing()
|
| 279 |
+
except Exception:
|
| 280 |
+
pass
|
| 281 |
+
try:
|
| 282 |
+
pipe.enable_vae_slicing()
|
| 283 |
+
except Exception:
|
| 284 |
+
pass
|
| 285 |
+
if device == "cuda":
|
| 286 |
+
try:
|
| 287 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 288 |
+
except Exception:
|
| 289 |
+
pass
|
| 290 |
pipe = pipe.to(device)
|
| 291 |
+
else:
|
| 292 |
+
# If accelerate is present, offload module-wise to save RAM
|
| 293 |
+
try:
|
| 294 |
+
pipe.enable_sequential_cpu_offload()
|
| 295 |
+
except Exception:
|
| 296 |
+
pass
|
| 297 |
+
|
| 298 |
+
self.t2i_pipe = pipe
|
| 299 |
+
self.t2i_model_id = model_id
|
| 300 |
+
return pipe, model_id, f"AI model loaded: {model_id}"
|
| 301 |
+
|
| 302 |
+
def ai_generate_background(self, prompt: str, seed: int, width: int, height: int) -> Tuple[Optional[Image.Image], Optional[str], str]:
|
| 303 |
+
"""
|
| 304 |
+
Generate a background and save to /tmp. Returns (preview_img, path, status).
|
| 305 |
+
"""
|
| 306 |
+
pipe, model_id, msg = self._ensure_t2i()
|
| 307 |
+
if pipe is None:
|
| 308 |
+
logger.warning(msg)
|
| 309 |
+
return None, None, msg
|
| 310 |
+
|
| 311 |
+
# Ensure sane, divisible-by-8 sizes
|
| 312 |
+
w = _div8(int(width)) if width else PREVIEW_W
|
| 313 |
+
h = _div8(int(height)) if height else PREVIEW_H
|
| 314 |
+
w = max(256, min(w, 1536))
|
| 315 |
+
h = max(256, min(h, 1536))
|
| 316 |
+
|
| 317 |
+
# Reasonable defaults for office-like backgrounds
|
| 318 |
+
prompt = (prompt or "professional modern office background, neutral colors, soft depth of field, clean, minimal, photorealistic")
|
| 319 |
+
negative = "text, watermark, logo, people, person, artifact, noisy, blurry"
|
| 320 |
+
|
| 321 |
+
# Seed & inference
|
| 322 |
+
try:
|
| 323 |
+
import torch
|
| 324 |
+
g = None
|
| 325 |
+
device = "cuda" if getattr(torch, "cuda", None) and torch.cuda.is_available() else "cpu"
|
| 326 |
+
try:
|
| 327 |
+
g = torch.Generator(device=device).manual_seed(int(seed)) if seed is not None else None
|
| 328 |
+
except Exception:
|
| 329 |
+
g = None
|
| 330 |
+
|
| 331 |
+
# steps: turbo likes very low steps; classic SD needs more
|
| 332 |
+
steps = 4 if ("turbo" in (model_id or "").lower()) else 25
|
| 333 |
+
guidance = 1.0 if ("turbo" in (model_id or "").lower()) else 7.0
|
| 334 |
+
|
| 335 |
+
with torch.inference_mode():
|
| 336 |
+
if device == "cuda":
|
| 337 |
+
# autocast for fp16
|
| 338 |
+
with torch.autocast("cuda"):
|
| 339 |
+
out = pipe(
|
| 340 |
+
prompt=prompt,
|
| 341 |
+
negative_prompt=negative,
|
| 342 |
+
height=h,
|
| 343 |
+
width=w,
|
| 344 |
+
guidance_scale=guidance,
|
| 345 |
+
num_inference_steps=steps,
|
| 346 |
+
generator=g
|
| 347 |
+
)
|
| 348 |
+
else:
|
| 349 |
+
out = pipe(
|
| 350 |
+
prompt=prompt,
|
| 351 |
+
negative_prompt=negative,
|
| 352 |
+
height=h,
|
| 353 |
+
width=w,
|
| 354 |
+
guidance_scale=guidance,
|
| 355 |
+
num_inference_steps=steps,
|
| 356 |
+
generator=g
|
| 357 |
+
)
|
| 358 |
+
img = out.images[0]
|
| 359 |
+
|
| 360 |
tmp_path = f"/tmp/ai_bg_{int(time.time())}.png"
|
| 361 |
img.save(tmp_path)
|
| 362 |
+
# Return preview-sized display to keep UI snappy
|
| 363 |
+
return img.resize((PREVIEW_W, PREVIEW_H), Image.LANCZOS), tmp_path, f"{msg} • Generated {w}x{h}"
|
| 364 |
except Exception as e:
|
| 365 |
+
logger.exception("AI generation error")
|
| 366 |
+
return None, None, f"AI generation failed: {e}"
|
| 367 |
|
| 368 |
# ---- PROCESS VIDEO ----
|
| 369 |
def process_video(
|
|
|
|
| 381 |
if not self.models_loaded:
|
| 382 |
return None, "Models not loaded yet"
|
| 383 |
|
| 384 |
+
if not video:
|
| 385 |
+
return None, "Please upload a video first."
|
| 386 |
+
|
| 387 |
logger.info("process_video called (video=%s, source=%s, preset=%s, file=%s, grad=%s, ai=%s)",
|
| 388 |
video, bg_source, preset_key, getattr(custom_bg_file, "name", None) if custom_bg_file else None,
|
| 389 |
{"type": grad_type, "c1": grad_color1, "c2": grad_color2, "angle": grad_angle},
|
|
|
|
| 398 |
return None, "Invalid or unreadable video file"
|
| 399 |
|
| 400 |
# Build bg_config based on source
|
|
|
|
| 401 |
src = (bg_source or "Preset").lower()
|
| 402 |
if src == "upload" and custom_bg_file is not None:
|
| 403 |
+
bg_cfg: Dict[str, Any] = {"custom_path": custom_bg_file.name}
|
| 404 |
elif src == "gradient":
|
| 405 |
bg_cfg = {
|
| 406 |
"gradient": {
|
|
|
|
| 461 |
|
| 462 |
# PRESET
|
| 463 |
preset_choices = list(PROFESSIONAL_BACKGROUNDS.keys())
|
| 464 |
+
default_preset = "office" if "office" in preset_choices else (preset_choices[0] if preset_choices else "office")
|
| 465 |
+
preset_key = gr.Dropdown(choices=preset_choices, value=default_preset, label="Preset")
|
| 466 |
+
|
| 467 |
# UPLOAD
|
| 468 |
custom_bg = gr.File(label="Custom Background (Image)", file_types=["image"], visible=False)
|
| 469 |
+
|
| 470 |
# GRADIENT
|
| 471 |
grad_type = gr.Dropdown(choices=["Linear", "Radial"], value="Linear", label="Gradient Type", visible=False)
|
| 472 |
grad_color1 = gr.ColorPicker(value="#222222", label="Start Color", visible=False)
|
|
|
|
| 492 |
# ---------- UI wiring ----------
|
| 493 |
|
| 494 |
# background source → show/hide controls
|
| 495 |
+
def on_source_toggle(src):
|
| 496 |
src = (src or "Preset").lower()
|
| 497 |
return (
|
| 498 |
+
gr.update(visible=(src == "preset")),
|
| 499 |
+
gr.update(visible=(src == "upload")),
|
| 500 |
+
gr.update(visible=(src == "gradient")),
|
| 501 |
+
gr.update(visible=(src == "gradient")),
|
| 502 |
+
gr.update(visible=(src == "gradient")),
|
| 503 |
+
gr.update(visible=(src == "gradient")),
|
| 504 |
+
gr.update(visible=(src == "ai generate")),
|
| 505 |
+
gr.update(visible=(src == "ai generate")),
|
| 506 |
+
gr.update(visible=(src == "ai generate")),
|
| 507 |
+
gr.update(visible=(src == "ai generate")),
|
| 508 |
+
gr.update(visible=(src == "ai generate")),
|
| 509 |
)
|
| 510 |
bg_source.change(
|
| 511 |
+
fn=on_source_toggle,
|
| 512 |
inputs=[bg_source],
|
| 513 |
outputs=[preset_key, custom_bg, grad_type, grad_color1, grad_color2, grad_angle, ai_prompt, ai_seed, ai_size, ai_go, ai_status],
|
| 514 |
)
|
| 515 |
|
| 516 |
+
# ✅ Clear any previous AI image path when switching source (avoids stale AI background)
|
| 517 |
+
def _clear_ai_state(_):
|
| 518 |
+
return None
|
| 519 |
+
bg_source.change(fn=_clear_ai_state, inputs=[bg_source], outputs=[ai_bg_path_state])
|
| 520 |
+
|
| 521 |
+
# When source changes, also refresh preview based on visible controls
|
| 522 |
+
def on_source_preview(src, pkey, gt, c1, c2, ang):
|
| 523 |
+
src_l = (src or "Preset").lower()
|
| 524 |
+
if src_l == "preset":
|
| 525 |
+
return app.preview_preset(pkey)
|
| 526 |
+
elif src_l == "gradient":
|
| 527 |
+
return app.preview_gradient(gt, c1, c2, ang)
|
| 528 |
+
# For upload/AI we keep whatever the component change handler sets (don’t overwrite)
|
| 529 |
+
return gr.update() # no-op
|
| 530 |
+
bg_source.change(
|
| 531 |
+
fn=on_source_preview,
|
| 532 |
+
inputs=[bg_source, preset_key, grad_type, grad_color1, grad_color2, grad_angle],
|
| 533 |
+
outputs=[bg_preview]
|
| 534 |
+
)
|
| 535 |
|
| 536 |
+
# live previews
|
| 537 |
+
preset_key.change(fn=lambda k: app.preview_preset(k), inputs=[preset_key], outputs=[bg_preview])
|
| 538 |
+
custom_bg.change(fn=lambda f: app.preview_upload(f), inputs=[custom_bg], outputs=[bg_preview])
|
| 539 |
for comp in (grad_type, grad_color1, grad_color2, grad_angle):
|
| 540 |
+
comp.change(
|
| 541 |
+
fn=lambda gt, c1, c2, ang: app.preview_gradient(gt, c1, c2, ang),
|
| 542 |
+
inputs=[grad_type, grad_color1, grad_color2, grad_angle],
|
| 543 |
+
outputs=[bg_preview],
|
| 544 |
+
)
|
| 545 |
|
| 546 |
# AI generate
|
| 547 |
def ai_generate(prompt, seed, size):
|
| 548 |
try:
|
| 549 |
+
w, h = map(int, size.split("x"))
|
| 550 |
except Exception:
|
| 551 |
+
w, h = PREVIEW_W, PREVIEW_H
|
| 552 |
+
img, path, msg = app.ai_generate_background(
|
| 553 |
+
prompt or "professional modern office background, neutral colors, depth of field",
|
| 554 |
+
int(seed), w, h
|
| 555 |
+
)
|
| 556 |
return img, (path or None), msg
|
| 557 |
ai_go.click(fn=ai_generate, inputs=[ai_prompt, ai_seed, ai_size], outputs=[bg_preview, ai_bg_path_state, ai_status])
|
| 558 |
|
|
|
|
| 560 |
def safe_load():
|
| 561 |
msg = app.load_models()
|
| 562 |
logger.info("UI: models loaded")
|
|
|
|
| 563 |
return msg, app.preview_preset(preset_key.value if hasattr(preset_key, "value") else "office")
|
| 564 |
btn_load.click(fn=safe_load, outputs=[status, bg_preview])
|
| 565 |
|