Create tests/test_models.py
Browse files- tests/test_models.py +349 -0
tests/test_models.py
ADDED
|
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Tests for the processing pipeline.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import pytest
|
| 6 |
+
import numpy as np
|
| 7 |
+
import cv2
|
| 8 |
+
from unittest.mock import Mock, patch, MagicMock
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
|
| 11 |
+
from api.pipeline import (
|
| 12 |
+
ProcessingPipeline,
|
| 13 |
+
PipelineConfig,
|
| 14 |
+
PipelineResult,
|
| 15 |
+
ProcessingMode,
|
| 16 |
+
PipelineStage
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class TestPipelineConfig:
|
| 21 |
+
"""Test pipeline configuration."""
|
| 22 |
+
|
| 23 |
+
def test_default_config(self):
|
| 24 |
+
"""Test default configuration values."""
|
| 25 |
+
config = PipelineConfig()
|
| 26 |
+
assert config.mode == ProcessingMode.PHOTO
|
| 27 |
+
assert config.quality_preset == "high"
|
| 28 |
+
assert config.use_gpu == True
|
| 29 |
+
assert config.enable_cache == True
|
| 30 |
+
|
| 31 |
+
def test_custom_config(self):
|
| 32 |
+
"""Test custom configuration."""
|
| 33 |
+
config = PipelineConfig(
|
| 34 |
+
mode=ProcessingMode.VIDEO,
|
| 35 |
+
quality_preset="ultra",
|
| 36 |
+
use_gpu=False,
|
| 37 |
+
batch_size=4
|
| 38 |
+
)
|
| 39 |
+
assert config.mode == ProcessingMode.VIDEO
|
| 40 |
+
assert config.quality_preset == "ultra"
|
| 41 |
+
assert config.use_gpu == False
|
| 42 |
+
assert config.batch_size == 4
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class TestProcessingPipeline:
|
| 46 |
+
"""Test the main processing pipeline."""
|
| 47 |
+
|
| 48 |
+
@pytest.fixture
|
| 49 |
+
def mock_pipeline(self, pipeline_config):
|
| 50 |
+
"""Create a pipeline with mocked components."""
|
| 51 |
+
with patch('api.pipeline.ModelFactory') as mock_factory:
|
| 52 |
+
with patch('api.pipeline.DeviceManager') as mock_device:
|
| 53 |
+
mock_device.return_value.get_device.return_value = 'cpu'
|
| 54 |
+
mock_factory.return_value.load_model.return_value = Mock()
|
| 55 |
+
|
| 56 |
+
pipeline = ProcessingPipeline(pipeline_config)
|
| 57 |
+
return pipeline
|
| 58 |
+
|
| 59 |
+
def test_pipeline_initialization(self, mock_pipeline):
|
| 60 |
+
"""Test pipeline initialization."""
|
| 61 |
+
assert mock_pipeline is not None
|
| 62 |
+
assert mock_pipeline.config is not None
|
| 63 |
+
assert mock_pipeline.current_stage == PipelineStage.INITIALIZATION
|
| 64 |
+
|
| 65 |
+
def test_process_image_success(self, mock_pipeline, sample_image, sample_background):
|
| 66 |
+
"""Test successful image processing."""
|
| 67 |
+
# Mock the processing methods
|
| 68 |
+
mock_pipeline._segment_image = Mock(return_value=np.ones((512, 512), dtype=np.uint8) * 255)
|
| 69 |
+
mock_pipeline.alpha_matting.process = Mock(return_value={
|
| 70 |
+
'alpha': np.ones((512, 512), dtype=np.float32),
|
| 71 |
+
'confidence': 0.95
|
| 72 |
+
})
|
| 73 |
+
|
| 74 |
+
result = mock_pipeline.process_image(sample_image, sample_background)
|
| 75 |
+
|
| 76 |
+
assert result is not None
|
| 77 |
+
assert isinstance(result, PipelineResult)
|
| 78 |
+
assert result.success == True
|
| 79 |
+
assert result.output_image is not None
|
| 80 |
+
|
| 81 |
+
def test_process_image_with_effects(self, mock_pipeline, sample_image):
|
| 82 |
+
"""Test image processing with effects."""
|
| 83 |
+
mock_pipeline.config.apply_effects = ['bokeh', 'vignette']
|
| 84 |
+
|
| 85 |
+
# Mock processing
|
| 86 |
+
mock_pipeline._segment_image = Mock(return_value=np.ones((512, 512), dtype=np.uint8) * 255)
|
| 87 |
+
mock_pipeline.alpha_matting.process = Mock(return_value={
|
| 88 |
+
'alpha': np.ones((512, 512), dtype=np.float32),
|
| 89 |
+
'confidence': 0.95
|
| 90 |
+
})
|
| 91 |
+
|
| 92 |
+
result = mock_pipeline.process_image(sample_image, None)
|
| 93 |
+
|
| 94 |
+
assert result is not None
|
| 95 |
+
assert result.success == True
|
| 96 |
+
|
| 97 |
+
def test_process_image_failure(self, mock_pipeline, sample_image):
|
| 98 |
+
"""Test image processing failure handling."""
|
| 99 |
+
# Mock segmentation to fail
|
| 100 |
+
mock_pipeline._segment_image = Mock(side_effect=Exception("Segmentation failed"))
|
| 101 |
+
|
| 102 |
+
result = mock_pipeline.process_image(sample_image, None)
|
| 103 |
+
|
| 104 |
+
assert result is not None
|
| 105 |
+
assert result.success == False
|
| 106 |
+
assert len(result.errors) > 0
|
| 107 |
+
|
| 108 |
+
@pytest.mark.parametrize("quality", ["low", "medium", "high", "ultra"])
|
| 109 |
+
def test_quality_presets(self, mock_pipeline, sample_image, quality):
|
| 110 |
+
"""Test different quality presets."""
|
| 111 |
+
mock_pipeline.config.quality_preset = quality
|
| 112 |
+
|
| 113 |
+
# Mock processing
|
| 114 |
+
mock_pipeline._segment_image = Mock(return_value=np.ones((512, 512), dtype=np.uint8) * 255)
|
| 115 |
+
mock_pipeline.alpha_matting.process = Mock(return_value={
|
| 116 |
+
'alpha': np.ones((512, 512), dtype=np.float32),
|
| 117 |
+
'confidence': 0.95
|
| 118 |
+
})
|
| 119 |
+
|
| 120 |
+
result = mock_pipeline.process_image(sample_image, None)
|
| 121 |
+
|
| 122 |
+
assert result is not None
|
| 123 |
+
assert result.success == True
|
| 124 |
+
|
| 125 |
+
def test_batch_processing(self, mock_pipeline, sample_image):
|
| 126 |
+
"""Test batch processing of multiple images."""
|
| 127 |
+
images = [sample_image] * 3
|
| 128 |
+
|
| 129 |
+
# Mock processing
|
| 130 |
+
mock_pipeline.process_image = Mock(return_value=PipelineResult(
|
| 131 |
+
success=True,
|
| 132 |
+
output_image=sample_image,
|
| 133 |
+
quality_score=0.9
|
| 134 |
+
))
|
| 135 |
+
|
| 136 |
+
results = mock_pipeline.process_batch(images)
|
| 137 |
+
|
| 138 |
+
assert len(results) == 3
|
| 139 |
+
assert all(r.success for r in results)
|
| 140 |
+
|
| 141 |
+
def test_progress_callback(self, mock_pipeline, sample_image):
|
| 142 |
+
"""Test progress callback functionality."""
|
| 143 |
+
progress_values = []
|
| 144 |
+
|
| 145 |
+
def progress_callback(value, message):
|
| 146 |
+
progress_values.append(value)
|
| 147 |
+
|
| 148 |
+
mock_pipeline.config.progress_callback = progress_callback
|
| 149 |
+
|
| 150 |
+
# Mock processing
|
| 151 |
+
mock_pipeline._segment_image = Mock(return_value=np.ones((512, 512), dtype=np.uint8) * 255)
|
| 152 |
+
mock_pipeline.alpha_matting.process = Mock(return_value={
|
| 153 |
+
'alpha': np.ones((512, 512), dtype=np.float32),
|
| 154 |
+
'confidence': 0.95
|
| 155 |
+
})
|
| 156 |
+
|
| 157 |
+
result = mock_pipeline.process_image(sample_image, None)
|
| 158 |
+
|
| 159 |
+
assert len(progress_values) > 0
|
| 160 |
+
assert 0.0 <= max(progress_values) <= 1.0
|
| 161 |
+
|
| 162 |
+
def test_cache_functionality(self, mock_pipeline, sample_image):
|
| 163 |
+
"""Test caching functionality."""
|
| 164 |
+
mock_pipeline.config.enable_cache = True
|
| 165 |
+
|
| 166 |
+
# Mock processing
|
| 167 |
+
mock_pipeline._segment_image = Mock(return_value=np.ones((512, 512), dtype=np.uint8) * 255)
|
| 168 |
+
mock_pipeline.alpha_matting.process = Mock(return_value={
|
| 169 |
+
'alpha': np.ones((512, 512), dtype=np.float32),
|
| 170 |
+
'confidence': 0.95
|
| 171 |
+
})
|
| 172 |
+
|
| 173 |
+
# First call
|
| 174 |
+
result1 = mock_pipeline.process_image(sample_image, None)
|
| 175 |
+
|
| 176 |
+
# Second call (should use cache)
|
| 177 |
+
result2 = mock_pipeline.process_image(sample_image, None)
|
| 178 |
+
|
| 179 |
+
assert result1.success == result2.success
|
| 180 |
+
# Verify segmentation was only called once (cache hit on second call)
|
| 181 |
+
assert mock_pipeline._segment_image.call_count == 1
|
| 182 |
+
|
| 183 |
+
def test_memory_management(self, mock_pipeline):
|
| 184 |
+
"""Test memory management and cleanup."""
|
| 185 |
+
initial_cache_size = len(mock_pipeline.cache)
|
| 186 |
+
|
| 187 |
+
# Process multiple images to fill cache
|
| 188 |
+
for i in range(10):
|
| 189 |
+
image = np.random.randint(0, 255, (512, 512, 3), dtype=np.uint8)
|
| 190 |
+
mock_pipeline.cache[f"test_{i}"] = PipelineResult(success=True)
|
| 191 |
+
|
| 192 |
+
# Clear cache
|
| 193 |
+
mock_pipeline.clear_cache()
|
| 194 |
+
|
| 195 |
+
assert len(mock_pipeline.cache) == 0
|
| 196 |
+
|
| 197 |
+
def test_statistics_tracking(self, mock_pipeline, sample_image):
|
| 198 |
+
"""Test statistics tracking."""
|
| 199 |
+
# Mock processing
|
| 200 |
+
mock_pipeline._segment_image = Mock(return_value=np.ones((512, 512), dtype=np.uint8) * 255)
|
| 201 |
+
mock_pipeline.alpha_matting.process = Mock(return_value={
|
| 202 |
+
'alpha': np.ones((512, 512), dtype=np.float32),
|
| 203 |
+
'confidence': 0.95
|
| 204 |
+
})
|
| 205 |
+
|
| 206 |
+
# Process image
|
| 207 |
+
result = mock_pipeline.process_image(sample_image, None)
|
| 208 |
+
|
| 209 |
+
# Get statistics
|
| 210 |
+
stats = mock_pipeline.get_statistics()
|
| 211 |
+
|
| 212 |
+
assert 'total_processed' in stats
|
| 213 |
+
assert stats['total_processed'] > 0
|
| 214 |
+
assert 'avg_time' in stats
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
class TestPipelineIntegration:
|
| 218 |
+
"""Integration tests for the pipeline."""
|
| 219 |
+
|
| 220 |
+
@pytest.mark.integration
|
| 221 |
+
@pytest.mark.slow
|
| 222 |
+
def test_end_to_end_processing(self, sample_image, sample_background, temp_dir):
|
| 223 |
+
"""Test end-to-end processing pipeline."""
|
| 224 |
+
config = PipelineConfig(
|
| 225 |
+
use_gpu=False,
|
| 226 |
+
quality_preset="medium",
|
| 227 |
+
enable_cache=False
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
# Create pipeline (will use real components if available)
|
| 231 |
+
try:
|
| 232 |
+
pipeline = ProcessingPipeline(config)
|
| 233 |
+
except Exception:
|
| 234 |
+
pytest.skip("Models not available for integration test")
|
| 235 |
+
|
| 236 |
+
# Process image
|
| 237 |
+
result = pipeline.process_image(sample_image, sample_background)
|
| 238 |
+
|
| 239 |
+
if result.success:
|
| 240 |
+
assert result.output_image is not None
|
| 241 |
+
assert result.output_image.shape == sample_image.shape
|
| 242 |
+
assert result.quality_score > 0
|
| 243 |
+
|
| 244 |
+
# Save output
|
| 245 |
+
output_path = temp_dir / "test_output.png"
|
| 246 |
+
cv2.imwrite(str(output_path), result.output_image)
|
| 247 |
+
assert output_path.exists()
|
| 248 |
+
|
| 249 |
+
@pytest.mark.integration
|
| 250 |
+
@pytest.mark.slow
|
| 251 |
+
def test_video_frame_processing(self, sample_video, temp_dir):
|
| 252 |
+
"""Test processing video frames."""
|
| 253 |
+
config = PipelineConfig(
|
| 254 |
+
mode=ProcessingMode.VIDEO,
|
| 255 |
+
use_gpu=False,
|
| 256 |
+
quality_preset="low"
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
try:
|
| 260 |
+
pipeline = ProcessingPipeline(config)
|
| 261 |
+
except Exception:
|
| 262 |
+
pytest.skip("Models not available for integration test")
|
| 263 |
+
|
| 264 |
+
# Open video
|
| 265 |
+
cap = cv2.VideoCapture(sample_video)
|
| 266 |
+
processed_frames = []
|
| 267 |
+
|
| 268 |
+
# Process first 5 frames
|
| 269 |
+
for i in range(5):
|
| 270 |
+
ret, frame = cap.read()
|
| 271 |
+
if not ret:
|
| 272 |
+
break
|
| 273 |
+
|
| 274 |
+
result = pipeline.process_image(frame, None)
|
| 275 |
+
if result.success:
|
| 276 |
+
processed_frames.append(result.output_image)
|
| 277 |
+
|
| 278 |
+
cap.release()
|
| 279 |
+
|
| 280 |
+
assert len(processed_frames) > 0
|
| 281 |
+
|
| 282 |
+
# Save as video
|
| 283 |
+
if processed_frames:
|
| 284 |
+
output_path = temp_dir / "test_video_out.mp4"
|
| 285 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 286 |
+
out = cv2.VideoWriter(str(output_path), fourcc, 30.0,
|
| 287 |
+
(processed_frames[0].shape[1], processed_frames[0].shape[0]))
|
| 288 |
+
|
| 289 |
+
for frame in processed_frames:
|
| 290 |
+
out.write(frame)
|
| 291 |
+
|
| 292 |
+
out.release()
|
| 293 |
+
assert output_path.exists()
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
class TestPipelinePerformance:
|
| 297 |
+
"""Performance tests for the pipeline."""
|
| 298 |
+
|
| 299 |
+
@pytest.mark.slow
|
| 300 |
+
def test_processing_speed(self, mock_pipeline, sample_image, performance_timer):
|
| 301 |
+
"""Test processing speed."""
|
| 302 |
+
# Mock processing
|
| 303 |
+
mock_pipeline._segment_image = Mock(return_value=np.ones((512, 512), dtype=np.uint8) * 255)
|
| 304 |
+
mock_pipeline.alpha_matting.process = Mock(return_value={
|
| 305 |
+
'alpha': np.ones((512, 512), dtype=np.float32),
|
| 306 |
+
'confidence': 0.95
|
| 307 |
+
})
|
| 308 |
+
|
| 309 |
+
with performance_timer as timer:
|
| 310 |
+
result = mock_pipeline.process_image(sample_image, None)
|
| 311 |
+
|
| 312 |
+
assert result.success == True
|
| 313 |
+
assert timer.elapsed < 1.0 # Should process in under 1 second
|
| 314 |
+
|
| 315 |
+
@pytest.mark.slow
|
| 316 |
+
def test_batch_processing_speed(self, mock_pipeline, sample_image, performance_timer):
|
| 317 |
+
"""Test batch processing speed."""
|
| 318 |
+
images = [sample_image] * 10
|
| 319 |
+
|
| 320 |
+
# Mock processing
|
| 321 |
+
mock_pipeline.process_image = Mock(return_value=PipelineResult(
|
| 322 |
+
success=True,
|
| 323 |
+
output_image=sample_image,
|
| 324 |
+
quality_score=0.9
|
| 325 |
+
))
|
| 326 |
+
|
| 327 |
+
with performance_timer as timer:
|
| 328 |
+
results = mock_pipeline.process_batch(images)
|
| 329 |
+
|
| 330 |
+
assert len(results) == 10
|
| 331 |
+
assert timer.elapsed < 5.0 # Should process 10 images in under 5 seconds
|
| 332 |
+
|
| 333 |
+
def test_memory_usage(self, mock_pipeline, sample_image):
|
| 334 |
+
"""Test memory usage during processing."""
|
| 335 |
+
import psutil
|
| 336 |
+
import os
|
| 337 |
+
|
| 338 |
+
process = psutil.Process(os.getpid())
|
| 339 |
+
initial_memory = process.memory_info().rss / 1024 / 1024 # MB
|
| 340 |
+
|
| 341 |
+
# Process multiple images
|
| 342 |
+
for _ in range(10):
|
| 343 |
+
mock_pipeline.process_image(sample_image, None)
|
| 344 |
+
|
| 345 |
+
final_memory = process.memory_info().rss / 1024 / 1024 # MB
|
| 346 |
+
memory_increase = final_memory - initial_memory
|
| 347 |
+
|
| 348 |
+
# Memory increase should be reasonable (less than 500MB for 10 images)
|
| 349 |
+
assert memory_increase < 500
|