Update utils/cv_processing.py
Browse files- utils/cv_processing.py +150 -19
utils/cv_processing.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
cv_processing.py ·
|
| 4 |
-
|
|
|
|
| 5 |
|
| 6 |
All public functions in this module expect RGB images (H,W,3) unless stated otherwise.
|
| 7 |
CoreVideoProcessor already converts BGR→RGB before calling into this module.
|
|
@@ -32,6 +33,11 @@ def _use_matanyone_enabled() -> bool:
|
|
| 32 |
val = os.getenv("USE_MATANYONE", "1")
|
| 33 |
return val.lower() in ("1", "true", "yes", "on")
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
# ----------------------------------------------------------------------------
|
| 36 |
# Background presets
|
| 37 |
# ----------------------------------------------------------------------------
|
|
@@ -139,6 +145,46 @@ def _vertical_gradient(top: Tuple[int,int,int], bottom: Tuple[int,int,int], widt
|
|
| 139 |
bg[y, :] = (r, g, b)
|
| 140 |
return bg
|
| 141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
# ----------------------------------------------------------------------------
|
| 143 |
# Background creation
|
| 144 |
# ----------------------------------------------------------------------------
|
|
@@ -160,7 +206,7 @@ def create_professional_background(key_or_cfg: Any, width: int, height: int) ->
|
|
| 160 |
return _vertical_gradient(dark, color, width, height)
|
| 161 |
|
| 162 |
# ----------------------------------------------------------------------------
|
| 163 |
-
# Improved Segmentation (expects RGB input)
|
| 164 |
# ----------------------------------------------------------------------------
|
| 165 |
def _simple_person_segmentation(frame_rgb: np.ndarray) -> np.ndarray:
|
| 166 |
"""Basic fallback segmentation using color detection on RGB frames."""
|
|
@@ -189,7 +235,14 @@ def _simple_person_segmentation(frame_rgb: np.ndarray) -> np.ndarray:
|
|
| 189 |
person_mask = np.zeros_like(person_mask)
|
| 190 |
cv2.drawContours(person_mask, [largest_contour], -1, 255, -1)
|
| 191 |
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
def segment_person_hq(
|
| 195 |
frame: np.ndarray,
|
|
@@ -199,7 +252,8 @@ def segment_person_hq(
|
|
| 199 |
**_compat_kwargs,
|
| 200 |
) -> np.ndarray:
|
| 201 |
"""
|
| 202 |
-
High-quality person segmentation with
|
|
|
|
| 203 |
Expects RGB frame (H,W,3), uint8 or float in [0,1].
|
| 204 |
"""
|
| 205 |
# Override with environment variable if not explicitly set
|
|
@@ -215,7 +269,38 @@ def segment_person_hq(
|
|
| 215 |
|
| 216 |
if predictor is not None:
|
| 217 |
try:
|
| 218 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
# Predictor adapter expects RGB uint8; convert if needed
|
| 220 |
if frame_rgb.dtype != np.uint8:
|
| 221 |
rgb_u8 = np.clip(frame_rgb * (255.0 if frame_rgb.dtype != np.uint8 else 1.0), 0, 255).astype(np.uint8) \
|
|
@@ -272,13 +357,20 @@ def segment_person_hq(
|
|
| 272 |
if mask is not None:
|
| 273 |
mask = _to_mask01(mask)
|
| 274 |
# Add debug logging
|
| 275 |
-
logger.info(f"SAM2 mask stats: shape={mask.shape}, min={mask.min():.3f}, max={mask.max():.3f}, mean={mask.mean():.3f}")
|
|
|
|
| 276 |
if float(mask.max()) > 0.1:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
return np.ascontiguousarray(mask)
|
| 278 |
else:
|
| 279 |
-
logger.warning("SAM2 mask too weak, using fallback")
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
| 282 |
|
| 283 |
except Exception as e:
|
| 284 |
logger.warning(f"SAM2 segmentation error: {e}")
|
|
@@ -292,7 +384,7 @@ def segment_person_hq(
|
|
| 292 |
segment_person_hq_original = segment_person_hq
|
| 293 |
|
| 294 |
# ----------------------------------------------------------------------------
|
| 295 |
-
# MatAnyone Refinement (Stateful-capable)
|
| 296 |
# ----------------------------------------------------------------------------
|
| 297 |
def refine_mask_hq(
|
| 298 |
frame: np.ndarray,
|
|
@@ -305,7 +397,7 @@ def refine_mask_hq(
|
|
| 305 |
**_compat_kwargs,
|
| 306 |
) -> np.ndarray:
|
| 307 |
"""
|
| 308 |
-
Refine mask with MatAnyone.
|
| 309 |
|
| 310 |
Modes:
|
| 311 |
• Stateful (preferred): provide `frame_idx`. On frame_idx==0, the session encodes with the mask.
|
|
@@ -324,6 +416,10 @@ def refine_mask_hq(
|
|
| 324 |
|
| 325 |
if use_matanyone is False:
|
| 326 |
logger.info("MatAnyone disabled by environment variable, returning unrefined mask")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
return mask01
|
| 328 |
|
| 329 |
if matanyone is not None and callable(matanyone):
|
|
@@ -338,7 +434,8 @@ def refine_mask_hq(
|
|
| 338 |
refined = matanyone(rgb01) # propagate without mask
|
| 339 |
refined = _mask_to_2d(refined)
|
| 340 |
if float(refined.max()) > 0.1:
|
| 341 |
-
|
|
|
|
| 342 |
logger.warning("MatAnyone stateful refinement produced empty/weak mask; falling back.")
|
| 343 |
|
| 344 |
# Backward-compat (stateless) path
|
|
@@ -368,7 +465,8 @@ def refine_mask_hq(
|
|
| 368 |
logger.debug(f"MatAnyone process failed: {e}")
|
| 369 |
|
| 370 |
if refined is not None and float(refined.max()) > 0.1:
|
| 371 |
-
|
|
|
|
| 372 |
else:
|
| 373 |
logger.warning("MatAnyone refinement failed or produced empty mask")
|
| 374 |
|
|
@@ -377,12 +475,27 @@ def refine_mask_hq(
|
|
| 377 |
|
| 378 |
# Fallback refinement
|
| 379 |
if fallback_enabled:
|
| 380 |
-
return
|
| 381 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
return mask01
|
| 383 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
def _postprocess_mask(mask01: np.ndarray) -> np.ndarray:
|
| 385 |
-
"""
|
| 386 |
mask_uint8 = (np.clip(mask01, 0, 1) * 255).astype(np.uint8)
|
| 387 |
|
| 388 |
kernel_close = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
|
@@ -397,6 +510,17 @@ def _postprocess_mask(mask01: np.ndarray) -> np.ndarray:
|
|
| 397 |
out = mask_uint8.astype(np.float32) / 255.0
|
| 398 |
return np.ascontiguousarray(out)
|
| 399 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 400 |
def _fallback_refine(mask01: np.ndarray) -> np.ndarray:
|
| 401 |
"""Simple fallback refinement"""
|
| 402 |
mask_uint8 = (np.clip(mask01, 0, 1) * 255).astype(np.uint8)
|
|
@@ -413,7 +537,7 @@ def _fallback_refine(mask01: np.ndarray) -> np.ndarray:
|
|
| 413 |
return np.ascontiguousarray(out)
|
| 414 |
|
| 415 |
# ----------------------------------------------------------------------------
|
| 416 |
-
# Compositing (expects RGB inputs)
|
| 417 |
# ----------------------------------------------------------------------------
|
| 418 |
def replace_background_hq(
|
| 419 |
frame: np.ndarray,
|
|
@@ -422,7 +546,7 @@ def replace_background_hq(
|
|
| 422 |
fallback_enabled: bool = True,
|
| 423 |
**_compat,
|
| 424 |
) -> np.ndarray:
|
| 425 |
-
"""High-quality background replacement with alpha blending (RGB in/out)."""
|
| 426 |
try:
|
| 427 |
H, W = frame.shape[:2]
|
| 428 |
|
|
@@ -431,7 +555,14 @@ def replace_background_hq(
|
|
| 431 |
|
| 432 |
m = _mask_to_2d(_to_mask01(mask01))
|
| 433 |
|
| 434 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 435 |
|
| 436 |
m3 = np.repeat(m[:, :, None], 3, axis=2)
|
| 437 |
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
cv_processing.py · MAXIMUM QUALITY VERSION with enhanced SAM2Handler integration
|
| 4 |
+
Updated to work with enhanced SAM2Handler that has full-body detection strategies
|
| 5 |
+
Now includes maximum quality mask cleaning and aggressive post-processing
|
| 6 |
|
| 7 |
All public functions in this module expect RGB images (H,W,3) unless stated otherwise.
|
| 8 |
CoreVideoProcessor already converts BGR→RGB before calling into this module.
|
|
|
|
| 33 |
val = os.getenv("USE_MATANYONE", "1")
|
| 34 |
return val.lower() in ("1", "true", "yes", "on")
|
| 35 |
|
| 36 |
+
def _use_max_quality_enabled() -> bool:
|
| 37 |
+
"""Check if maximum quality processing should be used"""
|
| 38 |
+
val = os.getenv("BFX_QUALITY", "max")
|
| 39 |
+
return val.lower() == "max"
|
| 40 |
+
|
| 41 |
# ----------------------------------------------------------------------------
|
| 42 |
# Background presets
|
| 43 |
# ----------------------------------------------------------------------------
|
|
|
|
| 145 |
bg[y, :] = (r, g, b)
|
| 146 |
return bg
|
| 147 |
|
| 148 |
+
# ----------------------------------------------------------------------------
|
| 149 |
+
# Maximum Quality Mask Cleaning (integrated from TwoStageProcessor)
|
| 150 |
+
# ----------------------------------------------------------------------------
|
| 151 |
+
def _maximum_quality_mask_cleaning(mask: np.ndarray) -> np.ndarray:
|
| 152 |
+
"""Maximum quality mask cleaning and refinement - same as TwoStageProcessor."""
|
| 153 |
+
try:
|
| 154 |
+
# Ensure uint8 format
|
| 155 |
+
if mask.max() <= 1.0:
|
| 156 |
+
mask_uint8 = (mask * 255).astype(np.uint8)
|
| 157 |
+
else:
|
| 158 |
+
mask_uint8 = mask.astype(np.uint8)
|
| 159 |
+
|
| 160 |
+
# Step 1: Fill small holes aggressively
|
| 161 |
+
kernel_fill = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (9, 9))
|
| 162 |
+
mask_filled = cv2.morphologyEx(mask_uint8, cv2.MORPH_CLOSE, kernel_fill)
|
| 163 |
+
|
| 164 |
+
# Step 2: Connect nearby regions
|
| 165 |
+
kernel_connect = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
|
| 166 |
+
mask_connected = cv2.morphologyEx(mask_filled, cv2.MORPH_CLOSE, kernel_connect)
|
| 167 |
+
|
| 168 |
+
# Step 3: Smooth boundaries heavily
|
| 169 |
+
mask_smooth1 = cv2.GaussianBlur(mask_connected, (7, 7), 2.0)
|
| 170 |
+
|
| 171 |
+
# Step 4: Re-threshold to crisp edges
|
| 172 |
+
_, mask_thresh = cv2.threshold(mask_smooth1, 127, 255, cv2.THRESH_BINARY)
|
| 173 |
+
|
| 174 |
+
# Step 5: Final edge smoothing
|
| 175 |
+
mask_final = cv2.GaussianBlur(mask_thresh, (5, 5), 1.0)
|
| 176 |
+
|
| 177 |
+
# Step 6: Dilate slightly to ensure full coverage
|
| 178 |
+
kernel_dilate = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
|
| 179 |
+
mask_dilated = cv2.dilate(mask_final, kernel_dilate, iterations=1)
|
| 180 |
+
|
| 181 |
+
logger.info("Maximum quality mask cleaning applied successfully")
|
| 182 |
+
return (mask_dilated.astype(np.float32) / 255.0)
|
| 183 |
+
|
| 184 |
+
except Exception as e:
|
| 185 |
+
logger.warning(f"Maximum quality mask cleaning failed: {e}")
|
| 186 |
+
return mask
|
| 187 |
+
|
| 188 |
# ----------------------------------------------------------------------------
|
| 189 |
# Background creation
|
| 190 |
# ----------------------------------------------------------------------------
|
|
|
|
| 206 |
return _vertical_gradient(dark, color, width, height)
|
| 207 |
|
| 208 |
# ----------------------------------------------------------------------------
|
| 209 |
+
# Improved Segmentation (expects RGB input) - ENHANCED FOR SAM2Handler
|
| 210 |
# ----------------------------------------------------------------------------
|
| 211 |
def _simple_person_segmentation(frame_rgb: np.ndarray) -> np.ndarray:
|
| 212 |
"""Basic fallback segmentation using color detection on RGB frames."""
|
|
|
|
| 235 |
person_mask = np.zeros_like(person_mask)
|
| 236 |
cv2.drawContours(person_mask, [largest_contour], -1, 255, -1)
|
| 237 |
|
| 238 |
+
mask_result = (person_mask.astype(np.float32) / 255.0)
|
| 239 |
+
|
| 240 |
+
# Apply maximum quality cleaning if enabled
|
| 241 |
+
if _use_max_quality_enabled():
|
| 242 |
+
mask_result = _maximum_quality_mask_cleaning(mask_result)
|
| 243 |
+
logger.info("Applied maximum quality cleaning to fallback segmentation")
|
| 244 |
+
|
| 245 |
+
return mask_result
|
| 246 |
|
| 247 |
def segment_person_hq(
|
| 248 |
frame: np.ndarray,
|
|
|
|
| 252 |
**_compat_kwargs,
|
| 253 |
) -> np.ndarray:
|
| 254 |
"""
|
| 255 |
+
High-quality person segmentation with ENHANCED SAM2Handler integration.
|
| 256 |
+
Now uses enhanced SAM2Handler.create_mask() for full-body detection.
|
| 257 |
Expects RGB frame (H,W,3), uint8 or float in [0,1].
|
| 258 |
"""
|
| 259 |
# Override with environment variable if not explicitly set
|
|
|
|
| 269 |
|
| 270 |
if predictor is not None:
|
| 271 |
try:
|
| 272 |
+
# ENHANCED: Check if this is the new SAM2Handler with create_mask method
|
| 273 |
+
if hasattr(predictor, 'create_mask'):
|
| 274 |
+
logger.info("Using ENHANCED SAM2Handler.create_mask() with full-body detection")
|
| 275 |
+
# SAM2Handler expects RGB uint8
|
| 276 |
+
if frame_rgb.dtype != np.uint8:
|
| 277 |
+
rgb_u8 = np.clip(frame_rgb * (255.0 if frame_rgb.dtype != np.uint8 else 1.0), 0, 255).astype(np.uint8) \
|
| 278 |
+
if np.issubdtype(frame_rgb.dtype, np.floating) else frame_rgb.astype(np.uint8)
|
| 279 |
+
else:
|
| 280 |
+
rgb_u8 = frame_rgb
|
| 281 |
+
|
| 282 |
+
# Use enhanced SAM2Handler with full-body detection strategies
|
| 283 |
+
mask = predictor.create_mask(rgb_u8)
|
| 284 |
+
|
| 285 |
+
if mask is not None:
|
| 286 |
+
# Convert to float format
|
| 287 |
+
mask_float = _to_mask01(mask)
|
| 288 |
+
logger.info(f"Enhanced SAM2Handler mask stats: shape={mask_float.shape}, min={mask_float.min():.3f}, max={mask_float.max():.3f}, mean={mask_float.mean():.3f}")
|
| 289 |
+
|
| 290 |
+
if float(mask_float.max()) > 0.1:
|
| 291 |
+
# Apply additional maximum quality cleaning if enabled
|
| 292 |
+
if _use_max_quality_enabled():
|
| 293 |
+
mask_float = _maximum_quality_mask_cleaning(mask_float)
|
| 294 |
+
logger.info("Applied additional maximum quality cleaning to enhanced SAM2 result")
|
| 295 |
+
return np.ascontiguousarray(mask_float)
|
| 296 |
+
else:
|
| 297 |
+
logger.warning("Enhanced SAM2Handler mask too weak, using fallback")
|
| 298 |
+
else:
|
| 299 |
+
logger.warning("Enhanced SAM2Handler returned None mask")
|
| 300 |
+
|
| 301 |
+
# FALLBACK: Basic SAM2 predictor handling (legacy compatibility)
|
| 302 |
+
elif hasattr(predictor, "set_image") and hasattr(predictor, "predict"):
|
| 303 |
+
logger.info("Using legacy SAM2 predictor interface")
|
| 304 |
# Predictor adapter expects RGB uint8; convert if needed
|
| 305 |
if frame_rgb.dtype != np.uint8:
|
| 306 |
rgb_u8 = np.clip(frame_rgb * (255.0 if frame_rgb.dtype != np.uint8 else 1.0), 0, 255).astype(np.uint8) \
|
|
|
|
| 357 |
if mask is not None:
|
| 358 |
mask = _to_mask01(mask)
|
| 359 |
# Add debug logging
|
| 360 |
+
logger.info(f"Legacy SAM2 mask stats: shape={mask.shape}, min={mask.min():.3f}, max={mask.max():.3f}, mean={mask.mean():.3f}")
|
| 361 |
+
|
| 362 |
if float(mask.max()) > 0.1:
|
| 363 |
+
# Apply maximum quality cleaning if enabled
|
| 364 |
+
if _use_max_quality_enabled():
|
| 365 |
+
mask = _maximum_quality_mask_cleaning(mask)
|
| 366 |
+
logger.info("Applied maximum quality cleaning to legacy SAM2 result")
|
| 367 |
return np.ascontiguousarray(mask)
|
| 368 |
else:
|
| 369 |
+
logger.warning("Legacy SAM2 mask too weak, using fallback")
|
| 370 |
+
else:
|
| 371 |
+
logger.warning("Legacy SAM2 returned no masks")
|
| 372 |
+
else:
|
| 373 |
+
logger.warning("Predictor doesn't have expected SAM2 interface")
|
| 374 |
|
| 375 |
except Exception as e:
|
| 376 |
logger.warning(f"SAM2 segmentation error: {e}")
|
|
|
|
| 384 |
segment_person_hq_original = segment_person_hq
|
| 385 |
|
| 386 |
# ----------------------------------------------------------------------------
|
| 387 |
+
# MatAnyone Refinement (Stateful-capable) - ENHANCED WITH MAX QUALITY
|
| 388 |
# ----------------------------------------------------------------------------
|
| 389 |
def refine_mask_hq(
|
| 390 |
frame: np.ndarray,
|
|
|
|
| 397 |
**_compat_kwargs,
|
| 398 |
) -> np.ndarray:
|
| 399 |
"""
|
| 400 |
+
Refine mask with MatAnyone + maximum quality post-processing.
|
| 401 |
|
| 402 |
Modes:
|
| 403 |
• Stateful (preferred): provide `frame_idx`. On frame_idx==0, the session encodes with the mask.
|
|
|
|
| 416 |
|
| 417 |
if use_matanyone is False:
|
| 418 |
logger.info("MatAnyone disabled by environment variable, returning unrefined mask")
|
| 419 |
+
# Still apply maximum quality cleaning if enabled
|
| 420 |
+
if _use_max_quality_enabled():
|
| 421 |
+
mask01 = _maximum_quality_mask_cleaning(mask01)
|
| 422 |
+
logger.info("Applied maximum quality cleaning to unrefined mask")
|
| 423 |
return mask01
|
| 424 |
|
| 425 |
if matanyone is not None and callable(matanyone):
|
|
|
|
| 434 |
refined = matanyone(rgb01) # propagate without mask
|
| 435 |
refined = _mask_to_2d(refined)
|
| 436 |
if float(refined.max()) > 0.1:
|
| 437 |
+
result = _postprocess_mask_max_quality(refined)
|
| 438 |
+
return result
|
| 439 |
logger.warning("MatAnyone stateful refinement produced empty/weak mask; falling back.")
|
| 440 |
|
| 441 |
# Backward-compat (stateless) path
|
|
|
|
| 465 |
logger.debug(f"MatAnyone process failed: {e}")
|
| 466 |
|
| 467 |
if refined is not None and float(refined.max()) > 0.1:
|
| 468 |
+
result = _postprocess_mask_max_quality(refined)
|
| 469 |
+
return result
|
| 470 |
else:
|
| 471 |
logger.warning("MatAnyone refinement failed or produced empty mask")
|
| 472 |
|
|
|
|
| 475 |
|
| 476 |
# Fallback refinement
|
| 477 |
if fallback_enabled:
|
| 478 |
+
return _fallback_refine_max_quality(mask01)
|
| 479 |
else:
|
| 480 |
+
# Still apply maximum quality cleaning if enabled
|
| 481 |
+
if _use_max_quality_enabled():
|
| 482 |
+
mask01 = _maximum_quality_mask_cleaning(mask01)
|
| 483 |
+
logger.info("Applied maximum quality cleaning to fallback mask")
|
| 484 |
return mask01
|
| 485 |
|
| 486 |
+
def _postprocess_mask_max_quality(mask01: np.ndarray) -> np.ndarray:
|
| 487 |
+
"""Post-process mask with maximum quality cleaning"""
|
| 488 |
+
if _use_max_quality_enabled():
|
| 489 |
+
# Use the aggressive maximum quality cleaning
|
| 490 |
+
result = _maximum_quality_mask_cleaning(mask01)
|
| 491 |
+
logger.info("Applied maximum quality post-processing to MatAnyone result")
|
| 492 |
+
return result
|
| 493 |
+
else:
|
| 494 |
+
# Use standard post-processing
|
| 495 |
+
return _postprocess_mask(mask01)
|
| 496 |
+
|
| 497 |
def _postprocess_mask(mask01: np.ndarray) -> np.ndarray:
|
| 498 |
+
"""Standard post-process mask to clean edges and remove artifacts"""
|
| 499 |
mask_uint8 = (np.clip(mask01, 0, 1) * 255).astype(np.uint8)
|
| 500 |
|
| 501 |
kernel_close = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
|
|
|
| 510 |
out = mask_uint8.astype(np.float32) / 255.0
|
| 511 |
return np.ascontiguousarray(out)
|
| 512 |
|
| 513 |
+
def _fallback_refine_max_quality(mask01: np.ndarray) -> np.ndarray:
|
| 514 |
+
"""Fallback refinement with maximum quality option"""
|
| 515 |
+
if _use_max_quality_enabled():
|
| 516 |
+
# Use aggressive maximum quality cleaning
|
| 517 |
+
result = _maximum_quality_mask_cleaning(mask01)
|
| 518 |
+
logger.info("Applied maximum quality cleaning to fallback refinement")
|
| 519 |
+
return result
|
| 520 |
+
else:
|
| 521 |
+
# Use standard fallback refinement
|
| 522 |
+
return _fallback_refine(mask01)
|
| 523 |
+
|
| 524 |
def _fallback_refine(mask01: np.ndarray) -> np.ndarray:
|
| 525 |
"""Simple fallback refinement"""
|
| 526 |
mask_uint8 = (np.clip(mask01, 0, 1) * 255).astype(np.uint8)
|
|
|
|
| 537 |
return np.ascontiguousarray(out)
|
| 538 |
|
| 539 |
# ----------------------------------------------------------------------------
|
| 540 |
+
# Compositing (expects RGB inputs) - ENHANCED WITH MAX QUALITY
|
| 541 |
# ----------------------------------------------------------------------------
|
| 542 |
def replace_background_hq(
|
| 543 |
frame: np.ndarray,
|
|
|
|
| 546 |
fallback_enabled: bool = True,
|
| 547 |
**_compat,
|
| 548 |
) -> np.ndarray:
|
| 549 |
+
"""High-quality background replacement with alpha blending (RGB in/out) - enhanced with max quality."""
|
| 550 |
try:
|
| 551 |
H, W = frame.shape[:2]
|
| 552 |
|
|
|
|
| 555 |
|
| 556 |
m = _mask_to_2d(_to_mask01(mask01))
|
| 557 |
|
| 558 |
+
# Apply maximum quality cleaning to mask before compositing
|
| 559 |
+
if _use_max_quality_enabled():
|
| 560 |
+
m = _maximum_quality_mask_cleaning(m)
|
| 561 |
+
logger.debug("Applied maximum quality cleaning to compositing mask")
|
| 562 |
+
|
| 563 |
+
# Enhanced feathering for maximum quality
|
| 564 |
+
feather_strength = 3 if _use_max_quality_enabled() else 1
|
| 565 |
+
m = _feather(m, k=feather_strength)
|
| 566 |
|
| 567 |
m3 = np.repeat(m[:, :, None], 3, axis=2)
|
| 568 |
|