Create api/pipeline.py
Browse files- api/pipeline.py +763 -0
api/pipeline.py
ADDED
|
@@ -0,0 +1,763 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Main processing pipeline for BackgroundFX Pro.
|
| 3 |
+
Orchestrates the complete background removal and replacement workflow.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import cv2
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
from typing import Dict, List, Optional, Tuple, Union, Callable, Any
|
| 10 |
+
from dataclasses import dataclass, field
|
| 11 |
+
from enum import Enum
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
import time
|
| 14 |
+
import threading
|
| 15 |
+
from queue import Queue
|
| 16 |
+
import json
|
| 17 |
+
import hashlib
|
| 18 |
+
from concurrent.futures import ThreadPoolExecutor, Future
|
| 19 |
+
|
| 20 |
+
from ..utils.logger import setup_logger
|
| 21 |
+
from ..utils.device import DeviceManager
|
| 22 |
+
from ..utils.config import ConfigManager
|
| 23 |
+
from ..utils import TimeEstimator, MemoryMonitor
|
| 24 |
+
|
| 25 |
+
from ..core.models import ModelFactory, ModelType
|
| 26 |
+
from ..core.temporal import TemporalCoherence
|
| 27 |
+
from ..core.quality import QualityAnalyzer
|
| 28 |
+
from ..core.edge import EdgeRefinement
|
| 29 |
+
from ..core.hair_segmentation import HairSegmentation
|
| 30 |
+
|
| 31 |
+
from ..processing.matting import AlphaMatting, MattingConfig, CompositingEngine
|
| 32 |
+
from ..processing.fallback import FallbackStrategy, FallbackLevel
|
| 33 |
+
from ..processing.effects import BackgroundEffects, CompositeEffects, EffectType
|
| 34 |
+
|
| 35 |
+
logger = setup_logger(__name__)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class ProcessingMode(Enum):
|
| 39 |
+
"""Processing mode types."""
|
| 40 |
+
PHOTO = "photo"
|
| 41 |
+
VIDEO = "video"
|
| 42 |
+
REALTIME = "realtime"
|
| 43 |
+
BATCH = "batch"
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class PipelineStage(Enum):
|
| 47 |
+
"""Pipeline processing stages."""
|
| 48 |
+
INITIALIZATION = "initialization"
|
| 49 |
+
PREPROCESSING = "preprocessing"
|
| 50 |
+
SEGMENTATION = "segmentation"
|
| 51 |
+
MATTING = "matting"
|
| 52 |
+
REFINEMENT = "refinement"
|
| 53 |
+
EFFECTS = "effects"
|
| 54 |
+
COMPOSITING = "compositing"
|
| 55 |
+
POSTPROCESSING = "postprocessing"
|
| 56 |
+
COMPLETE = "complete"
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
@dataclass
|
| 60 |
+
class PipelineConfig:
|
| 61 |
+
"""Configuration for the processing pipeline."""
|
| 62 |
+
# Model settings
|
| 63 |
+
model_type: ModelType = ModelType.RMBG_1_4
|
| 64 |
+
use_gpu: bool = True
|
| 65 |
+
device: Optional[str] = None
|
| 66 |
+
|
| 67 |
+
# Processing settings
|
| 68 |
+
mode: ProcessingMode = ProcessingMode.PHOTO
|
| 69 |
+
enable_temporal: bool = True
|
| 70 |
+
enable_hair_refinement: bool = True
|
| 71 |
+
enable_edge_refinement: bool = True
|
| 72 |
+
enable_fallback: bool = True
|
| 73 |
+
|
| 74 |
+
# Quality settings
|
| 75 |
+
quality_preset: str = "high" # low, medium, high, ultra
|
| 76 |
+
target_resolution: Optional[Tuple[int, int]] = None
|
| 77 |
+
maintain_aspect_ratio: bool = True
|
| 78 |
+
|
| 79 |
+
# Matting settings
|
| 80 |
+
matting_method: str = "auto" # auto, trimap, deep, guided
|
| 81 |
+
matting_config: MattingConfig = field(default_factory=MattingConfig)
|
| 82 |
+
|
| 83 |
+
# Effects settings
|
| 84 |
+
background_blur: bool = False
|
| 85 |
+
blur_strength: float = 15.0
|
| 86 |
+
apply_effects: List[EffectType] = field(default_factory=list)
|
| 87 |
+
|
| 88 |
+
# Performance settings
|
| 89 |
+
batch_size: int = 1
|
| 90 |
+
num_workers: int = 4
|
| 91 |
+
enable_caching: bool = True
|
| 92 |
+
cache_size_mb: int = 500
|
| 93 |
+
|
| 94 |
+
# Output settings
|
| 95 |
+
output_format: str = "png" # png, jpg, webp
|
| 96 |
+
output_quality: int = 95
|
| 97 |
+
preserve_metadata: bool = True
|
| 98 |
+
|
| 99 |
+
# Callbacks
|
| 100 |
+
progress_callback: Optional[Callable[[float, str], None]] = None
|
| 101 |
+
stage_callback: Optional[Callable[[PipelineStage, Dict], None]] = None
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
@dataclass
|
| 105 |
+
class PipelineResult:
|
| 106 |
+
"""Result from pipeline processing."""
|
| 107 |
+
success: bool
|
| 108 |
+
output_image: Optional[np.ndarray] = None
|
| 109 |
+
alpha_matte: Optional[np.ndarray] = None
|
| 110 |
+
foreground: Optional[np.ndarray] = None
|
| 111 |
+
background: Optional[np.ndarray] = None
|
| 112 |
+
metadata: Dict[str, Any] = field(default_factory=dict)
|
| 113 |
+
processing_time: float = 0.0
|
| 114 |
+
stages_completed: List[PipelineStage] = field(default_factory=list)
|
| 115 |
+
errors: List[str] = field(default_factory=list)
|
| 116 |
+
quality_score: float = 0.0
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
class ProcessingPipeline:
|
| 120 |
+
"""Main processing pipeline orchestrator."""
|
| 121 |
+
|
| 122 |
+
def __init__(self, config: Optional[PipelineConfig] = None):
|
| 123 |
+
"""
|
| 124 |
+
Initialize the processing pipeline.
|
| 125 |
+
|
| 126 |
+
Args:
|
| 127 |
+
config: Pipeline configuration
|
| 128 |
+
"""
|
| 129 |
+
self.config = config or PipelineConfig()
|
| 130 |
+
self.logger = setup_logger(f"{__name__}.ProcessingPipeline")
|
| 131 |
+
|
| 132 |
+
# Initialize components
|
| 133 |
+
self._initialize_components()
|
| 134 |
+
|
| 135 |
+
# State management
|
| 136 |
+
self.current_stage = PipelineStage.INITIALIZATION
|
| 137 |
+
self.processing_stats = {}
|
| 138 |
+
self.cache = {}
|
| 139 |
+
self.is_processing = False
|
| 140 |
+
|
| 141 |
+
# Thread pool for parallel processing
|
| 142 |
+
self.executor = ThreadPoolExecutor(max_workers=self.config.num_workers)
|
| 143 |
+
|
| 144 |
+
self.logger.info("Pipeline initialized successfully")
|
| 145 |
+
|
| 146 |
+
def _initialize_components(self):
|
| 147 |
+
"""Initialize all pipeline components."""
|
| 148 |
+
try:
|
| 149 |
+
# Device management
|
| 150 |
+
self.device_manager = DeviceManager()
|
| 151 |
+
if self.config.device:
|
| 152 |
+
self.device_manager.set_device(self.config.device)
|
| 153 |
+
elif not self.config.use_gpu:
|
| 154 |
+
self.device_manager.set_device('cpu')
|
| 155 |
+
|
| 156 |
+
# Core components
|
| 157 |
+
self.model_factory = ModelFactory()
|
| 158 |
+
self.quality_analyzer = QualityAnalyzer()
|
| 159 |
+
self.edge_refinement = EdgeRefinement()
|
| 160 |
+
self.temporal_coherence = TemporalCoherence() if self.config.enable_temporal else None
|
| 161 |
+
self.hair_segmentation = HairSegmentation() if self.config.enable_hair_refinement else None
|
| 162 |
+
|
| 163 |
+
# Processing components
|
| 164 |
+
self.alpha_matting = AlphaMatting(self.config.matting_config)
|
| 165 |
+
self.compositing_engine = CompositingEngine()
|
| 166 |
+
self.background_effects = BackgroundEffects()
|
| 167 |
+
self.composite_effects = CompositeEffects()
|
| 168 |
+
|
| 169 |
+
# Fallback strategy
|
| 170 |
+
self.fallback_strategy = FallbackStrategy() if self.config.enable_fallback else None
|
| 171 |
+
|
| 172 |
+
# Memory monitoring
|
| 173 |
+
self.memory_monitor = MemoryMonitor()
|
| 174 |
+
self.time_estimator = TimeEstimator()
|
| 175 |
+
|
| 176 |
+
# Load model
|
| 177 |
+
self._load_model()
|
| 178 |
+
|
| 179 |
+
except Exception as e:
|
| 180 |
+
self.logger.error(f"Component initialization failed: {e}")
|
| 181 |
+
raise
|
| 182 |
+
|
| 183 |
+
def _load_model(self):
|
| 184 |
+
"""Load the segmentation model."""
|
| 185 |
+
try:
|
| 186 |
+
self.logger.info(f"Loading model: {self.config.model_type.value}")
|
| 187 |
+
|
| 188 |
+
self.model = self.model_factory.load_model(
|
| 189 |
+
self.config.model_type,
|
| 190 |
+
device=self.device_manager.get_device(),
|
| 191 |
+
optimize=True
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
self.logger.info("Model loaded successfully")
|
| 195 |
+
|
| 196 |
+
except Exception as e:
|
| 197 |
+
self.logger.error(f"Model loading failed: {e}")
|
| 198 |
+
if self.config.enable_fallback:
|
| 199 |
+
self.logger.info("Attempting fallback model loading")
|
| 200 |
+
self.config.model_type = ModelType.U2NET_LITE
|
| 201 |
+
self.model = self.model_factory.load_model(
|
| 202 |
+
self.config.model_type,
|
| 203 |
+
device='cpu'
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
def process_image(self,
|
| 207 |
+
image: Union[np.ndarray, str, Path],
|
| 208 |
+
background: Optional[Union[np.ndarray, str, Path]] = None,
|
| 209 |
+
**kwargs) -> PipelineResult:
|
| 210 |
+
"""
|
| 211 |
+
Process a single image through the pipeline.
|
| 212 |
+
|
| 213 |
+
Args:
|
| 214 |
+
image: Input image (array or path)
|
| 215 |
+
background: Optional background image/path
|
| 216 |
+
**kwargs: Additional processing parameters
|
| 217 |
+
|
| 218 |
+
Returns:
|
| 219 |
+
PipelineResult with processed image and metadata
|
| 220 |
+
"""
|
| 221 |
+
start_time = time.time()
|
| 222 |
+
self.is_processing = True
|
| 223 |
+
result = PipelineResult(success=False)
|
| 224 |
+
|
| 225 |
+
try:
|
| 226 |
+
# Stage 1: Initialization
|
| 227 |
+
self._update_stage(PipelineStage.INITIALIZATION)
|
| 228 |
+
image_array = self._load_image(image)
|
| 229 |
+
bg_array = self._load_image(background) if background is not None else None
|
| 230 |
+
|
| 231 |
+
# Generate cache key
|
| 232 |
+
cache_key = self._generate_cache_key(image_array, kwargs)
|
| 233 |
+
|
| 234 |
+
# Check cache
|
| 235 |
+
if self.config.enable_caching and cache_key in self.cache:
|
| 236 |
+
self.logger.info("Using cached result")
|
| 237 |
+
cached_result = self.cache[cache_key]
|
| 238 |
+
cached_result.processing_time = time.time() - start_time
|
| 239 |
+
return cached_result
|
| 240 |
+
|
| 241 |
+
# Stage 2: Preprocessing
|
| 242 |
+
self._update_stage(PipelineStage.PREPROCESSING)
|
| 243 |
+
preprocessed = self._preprocess_image(image_array)
|
| 244 |
+
result.metadata['original_size'] = image_array.shape[:2]
|
| 245 |
+
result.metadata['preprocessed_size'] = preprocessed.shape[:2]
|
| 246 |
+
|
| 247 |
+
# Quality analysis
|
| 248 |
+
quality_metrics = self.quality_analyzer.analyze_frame(preprocessed)
|
| 249 |
+
result.metadata['quality_metrics'] = quality_metrics
|
| 250 |
+
|
| 251 |
+
# Stage 3: Segmentation
|
| 252 |
+
self._update_stage(PipelineStage.SEGMENTATION)
|
| 253 |
+
segmentation_mask = self._segment_image(preprocessed)
|
| 254 |
+
|
| 255 |
+
# Hair refinement if enabled
|
| 256 |
+
if self.config.enable_hair_refinement:
|
| 257 |
+
self.logger.info("Applying hair refinement")
|
| 258 |
+
hair_mask = self.hair_segmentation.segment_hair(preprocessed)
|
| 259 |
+
segmentation_mask = self._combine_masks(segmentation_mask, hair_mask)
|
| 260 |
+
|
| 261 |
+
# Stage 4: Matting
|
| 262 |
+
self._update_stage(PipelineStage.MATTING)
|
| 263 |
+
matting_result = self.alpha_matting.process(
|
| 264 |
+
preprocessed,
|
| 265 |
+
segmentation_mask,
|
| 266 |
+
method=self.config.matting_method
|
| 267 |
+
)
|
| 268 |
+
alpha_matte = matting_result['alpha']
|
| 269 |
+
result.metadata['matting_confidence'] = matting_result['confidence']
|
| 270 |
+
|
| 271 |
+
# Stage 5: Refinement
|
| 272 |
+
self._update_stage(PipelineStage.REFINEMENT)
|
| 273 |
+
if self.config.enable_edge_refinement:
|
| 274 |
+
alpha_matte = self.edge_refinement.refine_edges(
|
| 275 |
+
preprocessed,
|
| 276 |
+
(alpha_matte * 255).astype(np.uint8)
|
| 277 |
+
) / 255.0
|
| 278 |
+
|
| 279 |
+
# Resize alpha to original size if needed
|
| 280 |
+
if preprocessed.shape[:2] != image_array.shape[:2]:
|
| 281 |
+
alpha_matte = cv2.resize(
|
| 282 |
+
alpha_matte,
|
| 283 |
+
(image_array.shape[1], image_array.shape[0]),
|
| 284 |
+
interpolation=cv2.INTER_LINEAR
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
# Extract foreground
|
| 288 |
+
foreground = self._extract_foreground(image_array, alpha_matte)
|
| 289 |
+
|
| 290 |
+
# Stage 6: Background & Effects
|
| 291 |
+
self._update_stage(PipelineStage.EFFECTS)
|
| 292 |
+
|
| 293 |
+
if bg_array is not None:
|
| 294 |
+
# Resize background to match image
|
| 295 |
+
bg_array = self._resize_background(bg_array, image_array.shape[:2])
|
| 296 |
+
|
| 297 |
+
# Apply background effects
|
| 298 |
+
if self.config.background_blur:
|
| 299 |
+
bg_array = self.background_effects.apply_blur(
|
| 300 |
+
bg_array,
|
| 301 |
+
strength=self.config.blur_strength,
|
| 302 |
+
mask=1 - alpha_matte
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
# Apply configured effects
|
| 306 |
+
if self.config.apply_effects:
|
| 307 |
+
bg_array = self._apply_effects(bg_array, alpha_matte)
|
| 308 |
+
else:
|
| 309 |
+
# Create transparent background
|
| 310 |
+
bg_array = np.zeros_like(image_array)
|
| 311 |
+
|
| 312 |
+
# Stage 7: Compositing
|
| 313 |
+
self._update_stage(PipelineStage.COMPOSITING)
|
| 314 |
+
|
| 315 |
+
if self.config.apply_effects and EffectType.LIGHT_WRAP in self.config.apply_effects:
|
| 316 |
+
foreground = self.background_effects.apply_light_wrap(
|
| 317 |
+
foreground, bg_array, alpha_matte
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
composited = self.compositing_engine.composite(
|
| 321 |
+
foreground, bg_array, alpha_matte
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
# Apply post-composite effects
|
| 325 |
+
if self.config.apply_effects:
|
| 326 |
+
composited = self._apply_post_effects(composited, alpha_matte)
|
| 327 |
+
|
| 328 |
+
# Stage 8: Postprocessing
|
| 329 |
+
self._update_stage(PipelineStage.POSTPROCESSING)
|
| 330 |
+
final_output = self._postprocess_image(composited, alpha_matte)
|
| 331 |
+
|
| 332 |
+
# Calculate quality score
|
| 333 |
+
result.quality_score = self._calculate_quality_score(
|
| 334 |
+
final_output, alpha_matte, quality_metrics
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
# Build result
|
| 338 |
+
result.success = True
|
| 339 |
+
result.output_image = final_output
|
| 340 |
+
result.alpha_matte = alpha_matte
|
| 341 |
+
result.foreground = foreground
|
| 342 |
+
result.background = bg_array
|
| 343 |
+
result.stages_completed = list(PipelineStage)
|
| 344 |
+
result.processing_time = time.time() - start_time
|
| 345 |
+
|
| 346 |
+
# Cache result
|
| 347 |
+
if self.config.enable_caching:
|
| 348 |
+
self._cache_result(cache_key, result)
|
| 349 |
+
|
| 350 |
+
# Complete
|
| 351 |
+
self._update_stage(PipelineStage.COMPLETE)
|
| 352 |
+
self.logger.info(f"Processing completed in {result.processing_time:.2f}s")
|
| 353 |
+
|
| 354 |
+
# Update statistics
|
| 355 |
+
self._update_statistics(result)
|
| 356 |
+
|
| 357 |
+
except Exception as e:
|
| 358 |
+
self.logger.error(f"Pipeline processing failed: {e}")
|
| 359 |
+
result.errors.append(str(e))
|
| 360 |
+
|
| 361 |
+
if self.config.enable_fallback and self.fallback_strategy:
|
| 362 |
+
self.logger.info("Attempting fallback processing")
|
| 363 |
+
result = self._fallback_processing(image_array, bg_array)
|
| 364 |
+
|
| 365 |
+
finally:
|
| 366 |
+
self.is_processing = False
|
| 367 |
+
|
| 368 |
+
return result
|
| 369 |
+
|
| 370 |
+
def _preprocess_image(self, image: np.ndarray) -> np.ndarray:
|
| 371 |
+
"""Preprocess image for optimal processing."""
|
| 372 |
+
processed = image.copy()
|
| 373 |
+
|
| 374 |
+
# Resize if needed
|
| 375 |
+
if self.config.target_resolution:
|
| 376 |
+
target_h, target_w = self.config.target_resolution
|
| 377 |
+
h, w = image.shape[:2]
|
| 378 |
+
|
| 379 |
+
if self.config.maintain_aspect_ratio:
|
| 380 |
+
scale = min(target_w / w, target_h / h)
|
| 381 |
+
new_w = int(w * scale)
|
| 382 |
+
new_h = int(h * scale)
|
| 383 |
+
else:
|
| 384 |
+
new_w, new_h = target_w, target_h
|
| 385 |
+
|
| 386 |
+
if (new_w, new_h) != (w, h):
|
| 387 |
+
processed = cv2.resize(processed, (new_w, new_h),
|
| 388 |
+
interpolation=cv2.INTER_AREA)
|
| 389 |
+
|
| 390 |
+
# Apply quality-based preprocessing
|
| 391 |
+
if self.config.quality_preset == "low":
|
| 392 |
+
# Reduce noise for faster processing
|
| 393 |
+
processed = cv2.fastNlMeansDenoising(processed, None, 10, 7, 21)
|
| 394 |
+
elif self.config.quality_preset in ["high", "ultra"]:
|
| 395 |
+
# Enhance details
|
| 396 |
+
processed = cv2.detailEnhance(processed, sigma_s=10, sigma_r=0.15)
|
| 397 |
+
|
| 398 |
+
return processed
|
| 399 |
+
|
| 400 |
+
def _segment_image(self, image: np.ndarray) -> np.ndarray:
|
| 401 |
+
"""Perform image segmentation."""
|
| 402 |
+
try:
|
| 403 |
+
# Use the loaded model for segmentation
|
| 404 |
+
with torch.no_grad():
|
| 405 |
+
# Prepare input
|
| 406 |
+
input_tensor = self._prepare_input_tensor(image)
|
| 407 |
+
|
| 408 |
+
# Run inference
|
| 409 |
+
output = self.model(input_tensor)
|
| 410 |
+
|
| 411 |
+
# Process output
|
| 412 |
+
if isinstance(output, tuple):
|
| 413 |
+
output = output[0]
|
| 414 |
+
|
| 415 |
+
# Convert to numpy mask
|
| 416 |
+
mask = output.squeeze().cpu().numpy()
|
| 417 |
+
|
| 418 |
+
# Threshold and convert to uint8
|
| 419 |
+
mask = (mask > 0.5).astype(np.uint8) * 255
|
| 420 |
+
|
| 421 |
+
# Resize to original size if needed
|
| 422 |
+
if mask.shape[:2] != image.shape[:2]:
|
| 423 |
+
mask = cv2.resize(mask, (image.shape[1], image.shape[0]))
|
| 424 |
+
|
| 425 |
+
return mask
|
| 426 |
+
|
| 427 |
+
except Exception as e:
|
| 428 |
+
self.logger.error(f"Segmentation failed: {e}")
|
| 429 |
+
if self.config.enable_fallback:
|
| 430 |
+
# Use basic segmentation as fallback
|
| 431 |
+
from ..processing.fallback import ProcessingFallback
|
| 432 |
+
fallback = ProcessingFallback()
|
| 433 |
+
return fallback.basic_segmentation(image)
|
| 434 |
+
raise
|
| 435 |
+
|
| 436 |
+
def _prepare_input_tensor(self, image: np.ndarray) -> torch.Tensor:
|
| 437 |
+
"""Prepare image tensor for model input."""
|
| 438 |
+
# Resize to model input size (typically 512x512 or 1024x1024)
|
| 439 |
+
model_size = 512 # Default, should be from model config
|
| 440 |
+
resized = cv2.resize(image, (model_size, model_size))
|
| 441 |
+
|
| 442 |
+
# Convert to tensor
|
| 443 |
+
tensor = torch.from_numpy(resized.transpose(2, 0, 1)).float()
|
| 444 |
+
tensor = tensor.unsqueeze(0) / 255.0
|
| 445 |
+
|
| 446 |
+
# Move to device
|
| 447 |
+
tensor = tensor.to(self.device_manager.get_device())
|
| 448 |
+
|
| 449 |
+
return tensor
|
| 450 |
+
|
| 451 |
+
def _combine_masks(self, mask1: np.ndarray, mask2: np.ndarray) -> np.ndarray:
|
| 452 |
+
"""Combine two masks intelligently."""
|
| 453 |
+
# Convert to float for blending
|
| 454 |
+
m1 = mask1.astype(np.float32) / 255.0
|
| 455 |
+
m2 = mask2.astype(np.float32) / 255.0
|
| 456 |
+
|
| 457 |
+
# Combine using maximum (union)
|
| 458 |
+
combined = np.maximum(m1, m2)
|
| 459 |
+
|
| 460 |
+
# Convert back to uint8
|
| 461 |
+
return (combined * 255).astype(np.uint8)
|
| 462 |
+
|
| 463 |
+
def _extract_foreground(self, image: np.ndarray,
|
| 464 |
+
alpha: np.ndarray) -> np.ndarray:
|
| 465 |
+
"""Extract foreground using alpha matte."""
|
| 466 |
+
if len(alpha.shape) == 2:
|
| 467 |
+
alpha = np.expand_dims(alpha, axis=2)
|
| 468 |
+
|
| 469 |
+
if alpha.shape[2] == 1:
|
| 470 |
+
alpha = np.repeat(alpha, 3, axis=2)
|
| 471 |
+
|
| 472 |
+
# Premultiply alpha
|
| 473 |
+
foreground = image.astype(np.float32) * alpha
|
| 474 |
+
|
| 475 |
+
return foreground.astype(np.uint8)
|
| 476 |
+
|
| 477 |
+
def _resize_background(self, background: np.ndarray,
|
| 478 |
+
target_shape: Tuple[int, int]) -> np.ndarray:
|
| 479 |
+
"""Resize background to match target shape."""
|
| 480 |
+
h, w = target_shape
|
| 481 |
+
bg_h, bg_w = background.shape[:2]
|
| 482 |
+
|
| 483 |
+
if (bg_h, bg_w) == (h, w):
|
| 484 |
+
return background
|
| 485 |
+
|
| 486 |
+
# Calculate scale to cover entire image
|
| 487 |
+
scale = max(h / bg_h, w / bg_w)
|
| 488 |
+
new_h = int(bg_h * scale)
|
| 489 |
+
new_w = int(bg_w * scale)
|
| 490 |
+
|
| 491 |
+
# Resize
|
| 492 |
+
resized = cv2.resize(background, (new_w, new_h),
|
| 493 |
+
interpolation=cv2.INTER_LINEAR)
|
| 494 |
+
|
| 495 |
+
# Center crop
|
| 496 |
+
start_y = (new_h - h) // 2
|
| 497 |
+
start_x = (new_w - w) // 2
|
| 498 |
+
cropped = resized[start_y:start_y + h, start_x:start_x + w]
|
| 499 |
+
|
| 500 |
+
return cropped
|
| 501 |
+
|
| 502 |
+
def _apply_effects(self, image: np.ndarray,
|
| 503 |
+
mask: np.ndarray) -> np.ndarray:
|
| 504 |
+
"""Apply configured effects to image."""
|
| 505 |
+
result = image.copy()
|
| 506 |
+
|
| 507 |
+
for effect in self.config.apply_effects:
|
| 508 |
+
if effect == EffectType.BOKEH:
|
| 509 |
+
result = self.background_effects.apply_bokeh(result)
|
| 510 |
+
elif effect == EffectType.VIGNETTE:
|
| 511 |
+
result = self.background_effects.add_vignette(result)
|
| 512 |
+
elif effect == EffectType.FILM_GRAIN:
|
| 513 |
+
result = self.background_effects.add_film_grain(result)
|
| 514 |
+
|
| 515 |
+
return result
|
| 516 |
+
|
| 517 |
+
def _apply_post_effects(self, image: np.ndarray,
|
| 518 |
+
mask: np.ndarray) -> np.ndarray:
|
| 519 |
+
"""Apply post-composite effects."""
|
| 520 |
+
result = image.copy()
|
| 521 |
+
|
| 522 |
+
for effect in self.config.apply_effects:
|
| 523 |
+
if effect == EffectType.SHADOW:
|
| 524 |
+
result = self.background_effects.add_shadow(result, mask)
|
| 525 |
+
elif effect == EffectType.REFLECTION:
|
| 526 |
+
result = self.background_effects.add_reflection(result, mask)
|
| 527 |
+
elif effect == EffectType.GLOW:
|
| 528 |
+
result = self.background_effects.add_glow(result, mask)
|
| 529 |
+
elif effect == EffectType.CHROMATIC_ABERRATION:
|
| 530 |
+
result = self.background_effects.chromatic_aberration(result)
|
| 531 |
+
|
| 532 |
+
return result
|
| 533 |
+
|
| 534 |
+
def _postprocess_image(self, image: np.ndarray,
|
| 535 |
+
alpha: np.ndarray) -> np.ndarray:
|
| 536 |
+
"""Apply final postprocessing."""
|
| 537 |
+
result = image.copy()
|
| 538 |
+
|
| 539 |
+
# Color correction based on quality preset
|
| 540 |
+
if self.config.quality_preset in ["high", "ultra"]:
|
| 541 |
+
# Auto color balance
|
| 542 |
+
lab = cv2.cvtColor(result, cv2.COLOR_BGR2LAB)
|
| 543 |
+
l, a, b = cv2.split(lab)
|
| 544 |
+
l = cv2.equalizeHist(l)
|
| 545 |
+
result = cv2.cvtColor(cv2.merge([l, a, b]), cv2.COLOR_LAB2BGR)
|
| 546 |
+
|
| 547 |
+
# Sharpen if ultra quality
|
| 548 |
+
if self.config.quality_preset == "ultra":
|
| 549 |
+
kernel = np.array([[-1,-1,-1],
|
| 550 |
+
[-1, 9,-1],
|
| 551 |
+
[-1,-1,-1]])
|
| 552 |
+
result = cv2.filter2D(result, -1, kernel)
|
| 553 |
+
|
| 554 |
+
return result
|
| 555 |
+
|
| 556 |
+
def _calculate_quality_score(self, image: np.ndarray,
|
| 557 |
+
alpha: np.ndarray,
|
| 558 |
+
metrics: Dict) -> float:
|
| 559 |
+
"""Calculate overall quality score."""
|
| 560 |
+
scores = []
|
| 561 |
+
|
| 562 |
+
# Edge quality
|
| 563 |
+
edge_score = metrics.get('edge_clarity', 0.5)
|
| 564 |
+
scores.append(edge_score)
|
| 565 |
+
|
| 566 |
+
# Alpha matte quality (contrast)
|
| 567 |
+
alpha_std = np.std(alpha)
|
| 568 |
+
alpha_score = min(alpha_std * 2, 1.0) # Higher std = better separation
|
| 569 |
+
scores.append(alpha_score)
|
| 570 |
+
|
| 571 |
+
# Overall image quality
|
| 572 |
+
quality_score = metrics.get('overall_quality', 0.5)
|
| 573 |
+
scores.append(quality_score)
|
| 574 |
+
|
| 575 |
+
return np.mean(scores)
|
| 576 |
+
|
| 577 |
+
def _load_image(self, source: Union[np.ndarray, str, Path]) -> np.ndarray:
|
| 578 |
+
"""Load image from various sources."""
|
| 579 |
+
if isinstance(source, np.ndarray):
|
| 580 |
+
return source
|
| 581 |
+
|
| 582 |
+
path = Path(source) if not isinstance(source, Path) else source
|
| 583 |
+
if not path.exists():
|
| 584 |
+
raise FileNotFoundError(f"Image not found: {path}")
|
| 585 |
+
|
| 586 |
+
image = cv2.imread(str(path))
|
| 587 |
+
if image is None:
|
| 588 |
+
raise ValueError(f"Failed to load image: {path}")
|
| 589 |
+
|
| 590 |
+
return image
|
| 591 |
+
|
| 592 |
+
def _generate_cache_key(self, image: np.ndarray,
|
| 593 |
+
params: Dict) -> str:
|
| 594 |
+
"""Generate cache key for result."""
|
| 595 |
+
# Create hash from image and parameters
|
| 596 |
+
hasher = hashlib.md5()
|
| 597 |
+
hasher.update(image.tobytes())
|
| 598 |
+
hasher.update(json.dumps(params, sort_keys=True).encode())
|
| 599 |
+
return hasher.hexdigest()
|
| 600 |
+
|
| 601 |
+
def _cache_result(self, key: str, result: PipelineResult):
|
| 602 |
+
"""Cache processing result."""
|
| 603 |
+
self.cache[key] = result
|
| 604 |
+
|
| 605 |
+
# Limit cache size
|
| 606 |
+
cache_memory = sum(
|
| 607 |
+
r.output_image.nbytes if r.output_image is not None else 0
|
| 608 |
+
for r in self.cache.values()
|
| 609 |
+
)
|
| 610 |
+
|
| 611 |
+
max_bytes = self.config.cache_size_mb * 1024 * 1024
|
| 612 |
+
|
| 613 |
+
if cache_memory > max_bytes:
|
| 614 |
+
# Remove oldest entries
|
| 615 |
+
for old_key in list(self.cache.keys())[:len(self.cache)//4]:
|
| 616 |
+
del self.cache[old_key]
|
| 617 |
+
|
| 618 |
+
def _update_stage(self, stage: PipelineStage):
|
| 619 |
+
"""Update current processing stage."""
|
| 620 |
+
self.current_stage = stage
|
| 621 |
+
|
| 622 |
+
if self.config.stage_callback:
|
| 623 |
+
self.config.stage_callback(stage, {
|
| 624 |
+
'timestamp': time.time(),
|
| 625 |
+
'memory_usage': self.memory_monitor.get_usage()
|
| 626 |
+
})
|
| 627 |
+
|
| 628 |
+
if self.config.progress_callback:
|
| 629 |
+
progress = list(PipelineStage).index(stage) / len(PipelineStage)
|
| 630 |
+
self.config.progress_callback(progress, stage.value)
|
| 631 |
+
|
| 632 |
+
def _update_statistics(self, result: PipelineResult):
|
| 633 |
+
"""Update processing statistics."""
|
| 634 |
+
if 'total_processed' not in self.processing_stats:
|
| 635 |
+
self.processing_stats['total_processed'] = 0
|
| 636 |
+
self.processing_stats['total_time'] = 0
|
| 637 |
+
self.processing_stats['avg_quality'] = 0
|
| 638 |
+
|
| 639 |
+
self.processing_stats['total_processed'] += 1
|
| 640 |
+
self.processing_stats['total_time'] += result.processing_time
|
| 641 |
+
self.processing_stats['avg_time'] = (
|
| 642 |
+
self.processing_stats['total_time'] /
|
| 643 |
+
self.processing_stats['total_processed']
|
| 644 |
+
)
|
| 645 |
+
|
| 646 |
+
# Update average quality
|
| 647 |
+
n = self.processing_stats['total_processed']
|
| 648 |
+
old_avg = self.processing_stats['avg_quality']
|
| 649 |
+
self.processing_stats['avg_quality'] = (
|
| 650 |
+
(old_avg * (n - 1) + result.quality_score) / n
|
| 651 |
+
)
|
| 652 |
+
|
| 653 |
+
def _fallback_processing(self, image: np.ndarray,
|
| 654 |
+
background: Optional[np.ndarray]) -> PipelineResult:
|
| 655 |
+
"""Fallback processing when main pipeline fails."""
|
| 656 |
+
from ..processing.fallback import ProcessingFallback
|
| 657 |
+
|
| 658 |
+
result = PipelineResult(success=False)
|
| 659 |
+
fallback = ProcessingFallback()
|
| 660 |
+
|
| 661 |
+
try:
|
| 662 |
+
# Basic segmentation
|
| 663 |
+
mask = fallback.basic_segmentation(image)
|
| 664 |
+
|
| 665 |
+
# Basic matting
|
| 666 |
+
alpha = fallback.basic_matting(image, mask)
|
| 667 |
+
|
| 668 |
+
# Simple composite if background provided
|
| 669 |
+
if background is not None:
|
| 670 |
+
background = self._resize_background(background, image.shape[:2])
|
| 671 |
+
output = self.compositing_engine.composite(
|
| 672 |
+
image, background, alpha
|
| 673 |
+
)
|
| 674 |
+
else:
|
| 675 |
+
output = image
|
| 676 |
+
|
| 677 |
+
result.success = True
|
| 678 |
+
result.output_image = output
|
| 679 |
+
result.alpha_matte = alpha
|
| 680 |
+
result.metadata['fallback_used'] = True
|
| 681 |
+
|
| 682 |
+
except Exception as e:
|
| 683 |
+
self.logger.error(f"Fallback processing also failed: {e}")
|
| 684 |
+
result.errors.append(str(e))
|
| 685 |
+
|
| 686 |
+
return result
|
| 687 |
+
|
| 688 |
+
def process_batch(self, images: List[Union[np.ndarray, str, Path]],
|
| 689 |
+
background: Optional[Union[np.ndarray, str, Path]] = None,
|
| 690 |
+
**kwargs) -> List[PipelineResult]:
|
| 691 |
+
"""
|
| 692 |
+
Process multiple images in batch.
|
| 693 |
+
|
| 694 |
+
Args:
|
| 695 |
+
images: List of input images
|
| 696 |
+
background: Optional background for all images
|
| 697 |
+
**kwargs: Additional processing parameters
|
| 698 |
+
|
| 699 |
+
Returns:
|
| 700 |
+
List of PipelineResults
|
| 701 |
+
"""
|
| 702 |
+
results = []
|
| 703 |
+
total = len(images)
|
| 704 |
+
|
| 705 |
+
self.logger.info(f"Processing batch of {total} images")
|
| 706 |
+
|
| 707 |
+
# Process in parallel using thread pool
|
| 708 |
+
futures = []
|
| 709 |
+
for i, image in enumerate(images):
|
| 710 |
+
future = self.executor.submit(
|
| 711 |
+
self.process_image, image, background, **kwargs
|
| 712 |
+
)
|
| 713 |
+
futures.append(future)
|
| 714 |
+
|
| 715 |
+
# Collect results
|
| 716 |
+
for i, future in enumerate(futures):
|
| 717 |
+
try:
|
| 718 |
+
result = future.result(timeout=30)
|
| 719 |
+
results.append(result)
|
| 720 |
+
|
| 721 |
+
if self.config.progress_callback:
|
| 722 |
+
progress = (i + 1) / total
|
| 723 |
+
self.config.progress_callback(
|
| 724 |
+
progress,
|
| 725 |
+
f"Processed {i + 1}/{total}"
|
| 726 |
+
)
|
| 727 |
+
|
| 728 |
+
except Exception as e:
|
| 729 |
+
self.logger.error(f"Batch item {i} failed: {e}")
|
| 730 |
+
results.append(PipelineResult(
|
| 731 |
+
success=False,
|
| 732 |
+
errors=[str(e)]
|
| 733 |
+
))
|
| 734 |
+
|
| 735 |
+
return results
|
| 736 |
+
|
| 737 |
+
def get_statistics(self) -> Dict[str, Any]:
|
| 738 |
+
"""Get processing statistics."""
|
| 739 |
+
return {
|
| 740 |
+
**self.processing_stats,
|
| 741 |
+
'cache_size': len(self.cache),
|
| 742 |
+
'current_stage': self.current_stage.value,
|
| 743 |
+
'is_processing': self.is_processing,
|
| 744 |
+
'device': str(self.device_manager.get_device()),
|
| 745 |
+
'model_type': self.config.model_type.value
|
| 746 |
+
}
|
| 747 |
+
|
| 748 |
+
def clear_cache(self):
|
| 749 |
+
"""Clear the result cache."""
|
| 750 |
+
self.cache.clear()
|
| 751 |
+
self.logger.info("Cache cleared")
|
| 752 |
+
|
| 753 |
+
def shutdown(self):
|
| 754 |
+
"""Shutdown the pipeline and cleanup resources."""
|
| 755 |
+
self.executor.shutdown(wait=True)
|
| 756 |
+
self.clear_cache()
|
| 757 |
+
|
| 758 |
+
# Cleanup models
|
| 759 |
+
if hasattr(self, 'model'):
|
| 760 |
+
del self.model
|
| 761 |
+
torch.cuda.empty_cache()
|
| 762 |
+
|
| 763 |
+
self.logger.info("Pipeline shutdown complete")
|