Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,25 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
Video Background Replacement - Main Application
|
| 4 |
-
Refactored
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
"""
|
| 6 |
|
| 7 |
import os
|
| 8 |
-
import cv2
|
| 9 |
-
import numpy as np
|
| 10 |
-
import torch
|
| 11 |
-
import time
|
| 12 |
import logging
|
| 13 |
import threading
|
| 14 |
-
import subprocess
|
| 15 |
from pathlib import Path
|
| 16 |
from typing import Optional, Tuple, Dict, Any, Callable
|
| 17 |
-
from dataclasses import dataclass
|
| 18 |
|
| 19 |
# Configure logging
|
| 20 |
logging.basicConfig(
|
|
@@ -23,7 +28,7 @@
|
|
| 23 |
)
|
| 24 |
logger = logging.getLogger(__name__)
|
| 25 |
|
| 26 |
-
# Apply Gradio schema patch early
|
| 27 |
try:
|
| 28 |
import gradio_client.utils as gc_utils
|
| 29 |
original_get_type = gc_utils.get_type
|
|
@@ -44,7 +49,17 @@ def patched_get_type(schema):
|
|
| 44 |
except Exception as e:
|
| 45 |
logger.error(f"Gradio patch failed: {e}")
|
| 46 |
|
| 47 |
-
# Import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
from utilities import (
|
| 49 |
segment_person_hq,
|
| 50 |
refine_mask_hq,
|
|
@@ -54,6 +69,7 @@ def patched_get_type(schema):
|
|
| 54 |
validate_video_file
|
| 55 |
)
|
| 56 |
|
|
|
|
| 57 |
try:
|
| 58 |
from two_stage_processor import TwoStageProcessor, CHROMA_PRESETS
|
| 59 |
TWO_STAGE_AVAILABLE = True
|
|
@@ -61,273 +77,82 @@ def patched_get_type(schema):
|
|
| 61 |
TWO_STAGE_AVAILABLE = False
|
| 62 |
CHROMA_PRESETS = {'standard': {}}
|
| 63 |
|
| 64 |
-
# Configuration
|
| 65 |
-
@dataclass
|
| 66 |
-
class ProcessingConfig:
|
| 67 |
-
keyframe_interval: int = int(os.getenv('KEYFRAME_INTERVAL', '5'))
|
| 68 |
-
frame_skip: int = int(os.getenv('FRAME_SKIP', '1'))
|
| 69 |
-
memory_cleanup_interval: int = int(os.getenv('MEMORY_CLEANUP_INTERVAL', '30'))
|
| 70 |
-
max_video_length: int = int(os.getenv('MAX_VIDEO_LENGTH', '300')) # seconds
|
| 71 |
-
quality_preset: str = os.getenv('QUALITY_PRESET', 'balanced')
|
| 72 |
-
|
| 73 |
-
class DeviceManager:
|
| 74 |
-
"""Manage device detection and switching"""
|
| 75 |
-
|
| 76 |
-
@staticmethod
|
| 77 |
-
def get_optimal_device():
|
| 78 |
-
if torch.cuda.is_available():
|
| 79 |
-
try:
|
| 80 |
-
# Test CUDA functionality
|
| 81 |
-
test_tensor = torch.tensor([1.0], device='cuda')
|
| 82 |
-
del test_tensor
|
| 83 |
-
torch.cuda.empty_cache()
|
| 84 |
-
device = torch.device("cuda")
|
| 85 |
-
logger.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
| 86 |
-
return device
|
| 87 |
-
except Exception as e:
|
| 88 |
-
logger.warning(f"CUDA test failed: {e}, falling back to CPU")
|
| 89 |
-
|
| 90 |
-
logger.info("Using CPU device")
|
| 91 |
-
return torch.device("cpu")
|
| 92 |
-
|
| 93 |
-
class MemoryManager:
|
| 94 |
-
"""Enhanced memory management"""
|
| 95 |
-
|
| 96 |
-
def __init__(self, device):
|
| 97 |
-
self.device = device
|
| 98 |
-
self.gpu_available = device.type == 'cuda'
|
| 99 |
-
|
| 100 |
-
def cleanup_aggressive(self):
|
| 101 |
-
import gc
|
| 102 |
-
gc.collect()
|
| 103 |
-
if self.gpu_available:
|
| 104 |
-
torch.cuda.empty_cache()
|
| 105 |
-
torch.cuda.synchronize()
|
| 106 |
-
|
| 107 |
-
def get_memory_usage(self):
|
| 108 |
-
usage = {}
|
| 109 |
-
if self.gpu_available:
|
| 110 |
-
gpu_memory = torch.cuda.get_device_properties(0).total_memory
|
| 111 |
-
gpu_allocated = torch.cuda.memory_allocated(0)
|
| 112 |
-
usage['gpu_percent'] = (gpu_allocated / gpu_memory) * 100
|
| 113 |
-
usage['gpu_allocated_gb'] = gpu_allocated / (1024**3)
|
| 114 |
-
return usage
|
| 115 |
-
|
| 116 |
-
class ProgressTracker:
|
| 117 |
-
"""Enhanced progress tracking with detailed statistics"""
|
| 118 |
-
|
| 119 |
-
def __init__(self, total_frames: int, callback: Optional[Callable] = None):
|
| 120 |
-
self.total_frames = total_frames
|
| 121 |
-
self.callback = callback
|
| 122 |
-
self.start_time = time.time()
|
| 123 |
-
self.processed_frames = 0
|
| 124 |
-
self.frame_times = []
|
| 125 |
-
|
| 126 |
-
def update(self, frame_number: int, stage: str = ""):
|
| 127 |
-
current_time = time.time()
|
| 128 |
-
self.processed_frames = frame_number
|
| 129 |
-
|
| 130 |
-
elapsed_time = current_time - self.start_time
|
| 131 |
-
current_fps = self.processed_frames / elapsed_time if elapsed_time > 0 else 0
|
| 132 |
-
|
| 133 |
-
remaining_frames = self.total_frames - self.processed_frames
|
| 134 |
-
eta_seconds = remaining_frames / current_fps if current_fps > 0 else 0
|
| 135 |
-
|
| 136 |
-
progress_pct = self.processed_frames / self.total_frames if self.total_frames > 0 else 0
|
| 137 |
-
|
| 138 |
-
message = (
|
| 139 |
-
f"Frame {self.processed_frames}/{self.total_frames} | "
|
| 140 |
-
f"Elapsed: {self._format_time(elapsed_time)} | "
|
| 141 |
-
f"Speed: {current_fps:.1f} fps | "
|
| 142 |
-
f"ETA: {self._format_time(eta_seconds)}"
|
| 143 |
-
)
|
| 144 |
-
|
| 145 |
-
if stage:
|
| 146 |
-
message = f"{stage} | {message}"
|
| 147 |
-
|
| 148 |
-
if self.callback:
|
| 149 |
-
try:
|
| 150 |
-
self.callback(progress_pct, message)
|
| 151 |
-
except Exception as e:
|
| 152 |
-
logger.warning(f"Progress callback failed: {e}")
|
| 153 |
-
|
| 154 |
-
def _format_time(self, seconds: float) -> str:
|
| 155 |
-
if seconds < 60:
|
| 156 |
-
return f"{int(seconds)}s"
|
| 157 |
-
elif seconds < 3600:
|
| 158 |
-
return f"{int(seconds//60)}m {int(seconds%60)}s"
|
| 159 |
-
else:
|
| 160 |
-
hours = int(seconds // 3600)
|
| 161 |
-
minutes = int((seconds % 3600) // 60)
|
| 162 |
-
return f"{hours}h {minutes}m"
|
| 163 |
-
|
| 164 |
class VideoProcessor:
|
| 165 |
-
"""
|
|
|
|
|
|
|
| 166 |
|
| 167 |
def __init__(self):
|
| 168 |
-
|
| 169 |
-
self.memory_manager = MemoryManager(self.device)
|
| 170 |
self.config = ProcessingConfig()
|
| 171 |
-
self.
|
| 172 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
self.two_stage_processor = None
|
|
|
|
|
|
|
| 174 |
self.models_loaded = False
|
| 175 |
self.loading_lock = threading.Lock()
|
| 176 |
self.cancel_event = threading.Event()
|
| 177 |
|
|
|
|
|
|
|
| 178 |
def load_models(self, progress_callback: Optional[Callable] = None) -> str:
|
| 179 |
-
"""Load
|
| 180 |
with self.loading_lock:
|
| 181 |
if self.models_loaded:
|
| 182 |
return "Models already loaded and validated"
|
| 183 |
|
| 184 |
try:
|
| 185 |
self.cancel_event.clear()
|
| 186 |
-
start_time = time.time()
|
| 187 |
|
| 188 |
if progress_callback:
|
| 189 |
-
progress_callback(0.0, f"Starting model loading on {self.
|
| 190 |
|
| 191 |
-
# Load
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
|
|
|
| 195 |
|
| 196 |
-
# Load MatAnyone
|
| 197 |
-
self.matanyone_model = self._load_matanyone(progress_callback)
|
| 198 |
if self.cancel_event.is_set():
|
| 199 |
return "Model loading cancelled"
|
| 200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
# Initialize two-stage processor if available
|
| 202 |
-
if TWO_STAGE_AVAILABLE:
|
| 203 |
try:
|
| 204 |
-
self.two_stage_processor = TwoStageProcessor(
|
| 205 |
-
self.sam2_predictor, self.matanyone_model
|
| 206 |
-
)
|
| 207 |
logger.info("Two-stage processor initialized")
|
| 208 |
except Exception as e:
|
| 209 |
logger.warning(f"Two-stage processor init failed: {e}")
|
| 210 |
|
| 211 |
self.models_loaded = True
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
message = f"Models loaded successfully in {load_time:.1f}s on {self.device}"
|
| 215 |
-
if TWO_STAGE_AVAILABLE:
|
| 216 |
-
message += " (Two-stage mode available)"
|
| 217 |
-
|
| 218 |
logger.info(message)
|
| 219 |
return message
|
| 220 |
|
| 221 |
-
except
|
| 222 |
self.models_loaded = False
|
| 223 |
error_msg = f"Model loading failed: {str(e)}"
|
| 224 |
logger.error(error_msg)
|
| 225 |
return error_msg
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
try:
|
| 233 |
-
from huggingface_hub import hf_hub_download
|
| 234 |
-
from sam2.build_sam import build_sam2
|
| 235 |
-
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 236 |
-
|
| 237 |
-
# Download checkpoint
|
| 238 |
-
checkpoint_path = hf_hub_download(
|
| 239 |
-
repo_id="facebook/sam2-hiera-large",
|
| 240 |
-
filename="sam2_hiera_large.pt",
|
| 241 |
-
cache_dir=str(Path("/tmp/model_cache/sam2_checkpoint")),
|
| 242 |
-
force_download=False
|
| 243 |
-
)
|
| 244 |
-
|
| 245 |
-
# Build model
|
| 246 |
-
sam2_model = build_sam2("sam2_hiera_l.yaml", checkpoint_path)
|
| 247 |
-
sam2_model.to(self.device)
|
| 248 |
-
sam2_model.eval()
|
| 249 |
-
predictor = SAM2ImagePredictor(sam2_model)
|
| 250 |
-
|
| 251 |
-
# Validate with test
|
| 252 |
-
test_image = np.zeros((256, 256, 3), dtype=np.uint8)
|
| 253 |
-
predictor.set_image(test_image)
|
| 254 |
-
test_points = np.array([[128.0, 128.0]], dtype=np.float32)
|
| 255 |
-
test_labels = np.array([1], dtype=np.int32)
|
| 256 |
-
|
| 257 |
-
with torch.no_grad():
|
| 258 |
-
masks, scores, _ = predictor.predict(
|
| 259 |
-
point_coords=test_points,
|
| 260 |
-
point_labels=test_labels,
|
| 261 |
-
multimask_output=False
|
| 262 |
-
)
|
| 263 |
-
|
| 264 |
-
if masks is None or len(masks) == 0:
|
| 265 |
-
raise Exception("SAM2 validation failed")
|
| 266 |
-
|
| 267 |
-
if progress_callback:
|
| 268 |
-
progress_callback(0.5, "SAM2 loaded and validated")
|
| 269 |
-
|
| 270 |
-
return predictor
|
| 271 |
-
|
| 272 |
-
except Exception as e:
|
| 273 |
-
logger.error(f"SAM2 loading failed: {e}")
|
| 274 |
-
raise
|
| 275 |
-
|
| 276 |
-
def _load_matanyone(self, progress_callback: Optional[Callable]) -> Any:
|
| 277 |
-
"""Load MatAnyone processor for Python 3.10"""
|
| 278 |
-
if progress_callback:
|
| 279 |
-
progress_callback(0.6, "Loading MatAnyone...")
|
| 280 |
-
|
| 281 |
-
try:
|
| 282 |
-
# Import MatAnyone - Python 3.10 compatible
|
| 283 |
-
try:
|
| 284 |
-
from matanyone import InferenceCore
|
| 285 |
-
processor = InferenceCore("PeiqingYang/MatAnyone")
|
| 286 |
-
logger.info("MatAnyone loaded via InferenceCore")
|
| 287 |
-
except ImportError:
|
| 288 |
-
try:
|
| 289 |
-
# Alternative import path
|
| 290 |
-
import matanyone
|
| 291 |
-
processor = matanyone.load_model("PeiqingYang/MatAnyone")
|
| 292 |
-
logger.info("MatAnyone loaded via direct import")
|
| 293 |
-
except ImportError as e:
|
| 294 |
-
logger.error(f"MatAnyone import failed: {e}")
|
| 295 |
-
logger.error("Ensure all dependencies are installed: timm>=0.9.16, einops==0.8.0")
|
| 296 |
-
return None
|
| 297 |
-
|
| 298 |
-
# Test MatAnyone functionality
|
| 299 |
-
test_image = np.zeros((256, 256, 3), dtype=np.uint8)
|
| 300 |
-
test_mask = np.zeros((256, 256), dtype=np.uint8)
|
| 301 |
-
test_mask[64:192, 64:192] = 255
|
| 302 |
-
|
| 303 |
-
try:
|
| 304 |
-
if hasattr(processor, 'infer'):
|
| 305 |
-
test_result = processor.infer(test_image, test_mask)
|
| 306 |
-
elif hasattr(processor, 'process'):
|
| 307 |
-
test_result = processor.process(test_image, test_mask)
|
| 308 |
-
elif callable(processor):
|
| 309 |
-
test_result = processor(test_image, test_mask)
|
| 310 |
-
else:
|
| 311 |
-
logger.warning("MatAnyone processor has unknown interface")
|
| 312 |
-
return processor # Return anyway, utilities will handle
|
| 313 |
-
|
| 314 |
-
if test_result is not None:
|
| 315 |
-
logger.info("MatAnyone test successful")
|
| 316 |
-
else:
|
| 317 |
-
logger.warning("MatAnyone test returned None")
|
| 318 |
-
|
| 319 |
-
except Exception as test_error:
|
| 320 |
-
logger.warning(f"MatAnyone test failed: {test_error}")
|
| 321 |
-
# Still return processor - might work in actual use
|
| 322 |
-
|
| 323 |
-
if progress_callback:
|
| 324 |
-
progress_callback(0.9, "MatAnyone loaded successfully")
|
| 325 |
-
|
| 326 |
-
return processor
|
| 327 |
-
|
| 328 |
-
except Exception as e:
|
| 329 |
-
logger.error(f"MatAnyone loading failed: {e}")
|
| 330 |
-
return None
|
| 331 |
|
| 332 |
def process_video(
|
| 333 |
self,
|
|
@@ -340,20 +165,21 @@ def process_video(
|
|
| 340 |
preview_mask: bool = False,
|
| 341 |
preview_greenscreen: bool = False
|
| 342 |
) -> Tuple[Optional[str], str]:
|
| 343 |
-
"""Process video with
|
| 344 |
|
| 345 |
-
if not self.models_loaded:
|
| 346 |
return None, "Models not loaded. Please load models first."
|
| 347 |
|
| 348 |
if self.cancel_event.is_set():
|
| 349 |
return None, "Processing cancelled"
|
| 350 |
|
| 351 |
-
# Validate input
|
| 352 |
is_valid, validation_msg = validate_video_file(video_path)
|
| 353 |
if not is_valid:
|
| 354 |
return None, f"Invalid video: {validation_msg}"
|
| 355 |
|
| 356 |
try:
|
|
|
|
| 357 |
if use_two_stage and TWO_STAGE_AVAILABLE and self.two_stage_processor:
|
| 358 |
return self._process_two_stage(
|
| 359 |
video_path, background_choice, custom_background_path,
|
|
@@ -365,9 +191,12 @@ def process_video(
|
|
| 365 |
progress_callback, preview_mask, preview_greenscreen
|
| 366 |
)
|
| 367 |
|
| 368 |
-
except
|
| 369 |
logger.error(f"Video processing failed: {e}")
|
| 370 |
return None, f"Processing failed: {str(e)}"
|
|
|
|
|
|
|
|
|
|
| 371 |
|
| 372 |
def _process_single_stage(
|
| 373 |
self,
|
|
@@ -378,115 +207,39 @@ def _process_single_stage(
|
|
| 378 |
preview_mask: bool,
|
| 379 |
preview_greenscreen: bool
|
| 380 |
) -> Tuple[Optional[str], str]:
|
| 381 |
-
"""
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
# Prepare background
|
| 393 |
-
background = self._prepare_background(
|
| 394 |
-
background_choice, custom_background_path, frame_width, frame_height
|
| 395 |
)
|
| 396 |
-
if background is None:
|
| 397 |
-
cap.release()
|
| 398 |
-
return None, "Failed to prepare background"
|
| 399 |
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
output_path = f"/tmp/output_{timestamp}.mp4"
|
| 403 |
-
|
| 404 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 405 |
-
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
|
| 406 |
-
|
| 407 |
-
if not out.isOpened():
|
| 408 |
-
cap.release()
|
| 409 |
-
return None, "Could not create output video"
|
| 410 |
-
|
| 411 |
-
# Process frames
|
| 412 |
-
progress_tracker = ProgressTracker(total_frames, progress_callback)
|
| 413 |
-
frame_count = 0
|
| 414 |
-
successful_frames = 0
|
| 415 |
-
last_refined_mask = None
|
| 416 |
|
| 417 |
-
|
| 418 |
-
while True:
|
| 419 |
-
if self.cancel_event.is_set():
|
| 420 |
-
break
|
| 421 |
-
|
| 422 |
-
ret, frame = cap.read()
|
| 423 |
-
if not ret:
|
| 424 |
-
break
|
| 425 |
-
|
| 426 |
-
try:
|
| 427 |
-
progress_tracker.update(frame_count, "Processing")
|
| 428 |
-
|
| 429 |
-
# Segmentation
|
| 430 |
-
mask = segment_person_hq(frame, self.sam2_predictor)
|
| 431 |
-
|
| 432 |
-
# Mask refinement (keyframe-based)
|
| 433 |
-
if (frame_count % self.config.keyframe_interval == 0) or (last_refined_mask is None):
|
| 434 |
-
refined_mask = refine_mask_hq(frame, mask, self.matanyone_model)
|
| 435 |
-
last_refined_mask = refined_mask.copy()
|
| 436 |
-
else:
|
| 437 |
-
# Blend with previous refined mask for temporal consistency
|
| 438 |
-
alpha = 0.7
|
| 439 |
-
refined_mask = cv2.addWeighted(mask, alpha, last_refined_mask, 1-alpha, 0)
|
| 440 |
-
|
| 441 |
-
# Generate output based on mode
|
| 442 |
-
if preview_mask:
|
| 443 |
-
result_frame = self._create_mask_preview(frame, refined_mask)
|
| 444 |
-
elif preview_greenscreen:
|
| 445 |
-
result_frame = self._create_greenscreen_preview(frame, refined_mask)
|
| 446 |
-
else:
|
| 447 |
-
result_frame = replace_background_hq(frame, refined_mask, background)
|
| 448 |
-
|
| 449 |
-
out.write(result_frame)
|
| 450 |
-
successful_frames += 1
|
| 451 |
-
|
| 452 |
-
except Exception as frame_error:
|
| 453 |
-
logger.warning(f"Frame {frame_count} processing failed: {frame_error}")
|
| 454 |
-
out.write(frame) # Write original frame as fallback
|
| 455 |
-
|
| 456 |
-
frame_count += 1
|
| 457 |
-
|
| 458 |
-
# Memory cleanup
|
| 459 |
-
if frame_count % self.config.memory_cleanup_interval == 0:
|
| 460 |
-
self.memory_manager.cleanup_aggressive()
|
| 461 |
-
|
| 462 |
-
finally:
|
| 463 |
-
cap.release()
|
| 464 |
-
out.release()
|
| 465 |
-
|
| 466 |
-
if self.cancel_event.is_set():
|
| 467 |
-
try:
|
| 468 |
-
os.remove(output_path)
|
| 469 |
-
except:
|
| 470 |
-
pass
|
| 471 |
-
return None, "Processing cancelled"
|
| 472 |
-
|
| 473 |
-
if successful_frames == 0:
|
| 474 |
-
return None, "No frames processed successfully"
|
| 475 |
-
|
| 476 |
-
# Add audio if not preview mode
|
| 477 |
if not (preview_mask or preview_greenscreen):
|
| 478 |
-
|
|
|
|
|
|
|
|
|
|
| 479 |
else:
|
| 480 |
-
|
| 481 |
|
| 482 |
success_msg = (
|
| 483 |
-
f"
|
| 484 |
f"Background: {background_choice}\n"
|
| 485 |
f"Mode: Single-stage\n"
|
| 486 |
-
f"Device: {self.
|
| 487 |
)
|
| 488 |
|
| 489 |
-
return
|
| 490 |
|
| 491 |
def _process_two_stage(
|
| 492 |
self,
|
|
@@ -496,21 +249,24 @@ def _process_two_stage(
|
|
| 496 |
progress_callback: Optional[Callable],
|
| 497 |
chroma_preset: str
|
| 498 |
) -> Tuple[Optional[str], str]:
|
| 499 |
-
"""
|
| 500 |
|
|
|
|
|
|
|
| 501 |
cap = cv2.VideoCapture(video_path)
|
| 502 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 503 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 504 |
cap.release()
|
| 505 |
|
| 506 |
-
# Prepare background
|
| 507 |
-
background = self.
|
| 508 |
background_choice, custom_background_path, frame_width, frame_height
|
| 509 |
)
|
| 510 |
if background is None:
|
| 511 |
return None, "Failed to prepare background"
|
| 512 |
|
| 513 |
# Process with two-stage pipeline
|
|
|
|
| 514 |
timestamp = int(time.time())
|
| 515 |
final_output = f"/tmp/twostage_final_{timestamp}.mp4"
|
| 516 |
|
|
@@ -532,117 +288,49 @@ def _process_two_stage(
|
|
| 532 |
f"Background: {background_choice}\n"
|
| 533 |
f"Preset: {chroma_preset}\n"
|
| 534 |
f"Quality: Cinema-grade\n"
|
| 535 |
-
f"Device: {self.
|
| 536 |
)
|
| 537 |
|
| 538 |
return result, success_msg
|
| 539 |
|
| 540 |
-
def _prepare_background(
|
| 541 |
-
self,
|
| 542 |
-
background_choice: str,
|
| 543 |
-
custom_background_path: Optional[str],
|
| 544 |
-
width: int,
|
| 545 |
-
height: int
|
| 546 |
-
) -> Optional[np.ndarray]:
|
| 547 |
-
"""Prepare background image"""
|
| 548 |
-
|
| 549 |
-
if background_choice == "custom" and custom_background_path:
|
| 550 |
-
if not os.path.exists(custom_background_path):
|
| 551 |
-
logger.error(f"Custom background not found: {custom_background_path}")
|
| 552 |
-
return None
|
| 553 |
-
|
| 554 |
-
background = cv2.imread(custom_background_path)
|
| 555 |
-
if background is None:
|
| 556 |
-
logger.error("Could not read custom background")
|
| 557 |
-
return None
|
| 558 |
-
else:
|
| 559 |
-
if background_choice not in PROFESSIONAL_BACKGROUNDS:
|
| 560 |
-
logger.error(f"Unknown background: {background_choice}")
|
| 561 |
-
return None
|
| 562 |
-
|
| 563 |
-
bg_config = PROFESSIONAL_BACKGROUNDS[background_choice]
|
| 564 |
-
background = create_professional_background(bg_config, width, height)
|
| 565 |
-
|
| 566 |
-
return cv2.resize(background, (width, height))
|
| 567 |
-
|
| 568 |
-
def _create_mask_preview(self, frame: np.ndarray, mask: np.ndarray) -> np.ndarray:
|
| 569 |
-
"""Create mask preview visualization"""
|
| 570 |
-
mask_vis = np.zeros_like(frame)
|
| 571 |
-
mask_vis[..., 1] = mask # Green channel
|
| 572 |
-
return mask_vis
|
| 573 |
-
|
| 574 |
-
def _create_greenscreen_preview(self, frame: np.ndarray, mask: np.ndarray) -> np.ndarray:
|
| 575 |
-
"""Create green screen preview"""
|
| 576 |
-
green_bg = np.zeros_like(frame)
|
| 577 |
-
green_bg[:, :] = [0, 255, 0] # Pure green
|
| 578 |
-
|
| 579 |
-
mask_3ch = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
|
| 580 |
-
mask_norm = mask_3ch.astype(float) / 255
|
| 581 |
-
|
| 582 |
-
return (frame * mask_norm + green_bg * (1 - mask_norm)).astype(np.uint8)
|
| 583 |
-
|
| 584 |
-
def _add_audio(self, input_video: str, processed_video: str) -> str:
|
| 585 |
-
"""Add audio from original video to processed video"""
|
| 586 |
-
timestamp = int(time.time())
|
| 587 |
-
final_output = f"/tmp/final_with_audio_{timestamp}.mp4"
|
| 588 |
-
|
| 589 |
-
try:
|
| 590 |
-
# Check if input has audio
|
| 591 |
-
result = subprocess.run([
|
| 592 |
-
'ffprobe', '-v', 'quiet', '-select_streams', 'a:0',
|
| 593 |
-
'-show_entries', 'stream=codec_name', '-of', 'csv=p=0', input_video
|
| 594 |
-
], capture_output=True, text=True, timeout=30)
|
| 595 |
-
|
| 596 |
-
if result.returncode != 0:
|
| 597 |
-
logger.info("Input video has no audio")
|
| 598 |
-
return processed_video
|
| 599 |
-
|
| 600 |
-
# Add audio
|
| 601 |
-
result = subprocess.run([
|
| 602 |
-
'ffmpeg', '-y', '-i', processed_video, '-i', input_video,
|
| 603 |
-
'-c:v', 'copy', '-c:a', 'aac', '-b:a', '192k',
|
| 604 |
-
'-map', '0:v:0', '-map', '1:a:0', '-shortest', final_output
|
| 605 |
-
], capture_output=True, text=True, timeout=300)
|
| 606 |
-
|
| 607 |
-
if result.returncode == 0 and os.path.exists(final_output):
|
| 608 |
-
try:
|
| 609 |
-
os.remove(processed_video)
|
| 610 |
-
except:
|
| 611 |
-
pass
|
| 612 |
-
return final_output
|
| 613 |
-
else:
|
| 614 |
-
logger.warning("Audio processing failed, using video without audio")
|
| 615 |
-
return processed_video
|
| 616 |
-
|
| 617 |
-
except Exception as e:
|
| 618 |
-
logger.warning(f"Audio processing error: {e}")
|
| 619 |
-
return processed_video
|
| 620 |
-
|
| 621 |
def get_status(self) -> Dict[str, Any]:
|
| 622 |
-
"""Get
|
| 623 |
-
|
| 624 |
'models_loaded': self.models_loaded,
|
| 625 |
-
'sam2_available': self.sam2_predictor is not None,
|
| 626 |
-
'matanyone_available': self.matanyone_model is not None,
|
| 627 |
'two_stage_available': TWO_STAGE_AVAILABLE and self.two_stage_processor is not None,
|
| 628 |
-
'device': str(self.
|
| 629 |
'memory_usage': self.memory_manager.get_memory_usage(),
|
| 630 |
-
'config':
|
| 631 |
-
'keyframe_interval': self.config.keyframe_interval,
|
| 632 |
-
'quality_preset': self.config.quality_preset
|
| 633 |
-
}
|
| 634 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 635 |
|
| 636 |
def cancel_processing(self):
|
| 637 |
-
"""Cancel
|
| 638 |
self.cancel_event.set()
|
| 639 |
logger.info("Processing cancellation requested")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 640 |
|
| 641 |
-
# Global processor instance
|
| 642 |
processor = VideoProcessor()
|
| 643 |
|
| 644 |
-
#
|
| 645 |
def load_models_with_validation(progress_callback: Optional[Callable] = None) -> str:
|
|
|
|
| 646 |
return processor.load_models(progress_callback)
|
| 647 |
|
| 648 |
def process_video_fixed(
|
|
@@ -655,6 +343,7 @@ def process_video_fixed(
|
|
| 655 |
preview_mask: bool = False,
|
| 656 |
preview_greenscreen: bool = False
|
| 657 |
) -> Tuple[Optional[str], str]:
|
|
|
|
| 658 |
return processor.process_video(
|
| 659 |
video_path, background_choice, custom_background_path,
|
| 660 |
progress_callback, use_two_stage, chroma_preset,
|
|
@@ -662,9 +351,11 @@ def process_video_fixed(
|
|
| 662 |
)
|
| 663 |
|
| 664 |
def get_model_status() -> Dict[str, Any]:
|
|
|
|
| 665 |
return processor.get_status()
|
| 666 |
|
| 667 |
def get_cache_status() -> Dict[str, Any]:
|
|
|
|
| 668 |
return processor.get_status()
|
| 669 |
|
| 670 |
# For backward compatibility
|
|
@@ -674,8 +365,9 @@ def main():
|
|
| 674 |
"""Main application entry point"""
|
| 675 |
try:
|
| 676 |
logger.info("Starting Video Background Replacement application")
|
| 677 |
-
logger.info(f"Device: {processor.
|
| 678 |
logger.info(f"Two-stage available: {TWO_STAGE_AVAILABLE}")
|
|
|
|
| 679 |
|
| 680 |
# Import and create UI
|
| 681 |
from ui_components import create_interface
|
|
@@ -693,6 +385,9 @@ def main():
|
|
| 693 |
except Exception as e:
|
| 694 |
logger.error(f"Application startup failed: {e}")
|
| 695 |
raise
|
|
|
|
|
|
|
|
|
|
| 696 |
|
| 697 |
if __name__ == "__main__":
|
| 698 |
main()
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
Video Background Replacement - Main Application Entry Point
|
| 4 |
+
Refactored modular architecture - orchestrates specialized components
|
| 5 |
+
|
| 6 |
+
This file has been refactored from a monolithic 600+ line structure into
|
| 7 |
+
a clean orchestration layer that coordinates specialized modules:
|
| 8 |
+
- config: Application configuration and environment variables
|
| 9 |
+
- device_manager: Hardware detection and optimization
|
| 10 |
+
- memory_manager: Memory and GPU resource management
|
| 11 |
+
- model_loader: AI model loading and validation
|
| 12 |
+
- video_processor: Core video processing pipeline
|
| 13 |
+
- audio_processor: Audio track handling and FFmpeg operations
|
| 14 |
+
- progress_tracker: Progress monitoring and ETA calculations
|
| 15 |
+
- exceptions: Custom exception classes for better error handling
|
| 16 |
"""
|
| 17 |
|
| 18 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
import logging
|
| 20 |
import threading
|
|
|
|
| 21 |
from pathlib import Path
|
| 22 |
from typing import Optional, Tuple, Dict, Any, Callable
|
|
|
|
| 23 |
|
| 24 |
# Configure logging
|
| 25 |
logging.basicConfig(
|
|
|
|
| 28 |
)
|
| 29 |
logger = logging.getLogger(__name__)
|
| 30 |
|
| 31 |
+
# Apply Gradio schema patch early (before other imports)
|
| 32 |
try:
|
| 33 |
import gradio_client.utils as gc_utils
|
| 34 |
original_get_type = gc_utils.get_type
|
|
|
|
| 49 |
except Exception as e:
|
| 50 |
logger.error(f"Gradio patch failed: {e}")
|
| 51 |
|
| 52 |
+
# Import modular components
|
| 53 |
+
from config import ProcessingConfig
|
| 54 |
+
from device_manager import DeviceManager
|
| 55 |
+
from memory_manager import MemoryManager
|
| 56 |
+
from model_loader import ModelLoader
|
| 57 |
+
from video_processor import CoreVideoProcessor
|
| 58 |
+
from audio_processor import AudioProcessor
|
| 59 |
+
from progress_tracker import ProgressTracker
|
| 60 |
+
from exceptions import VideoProcessingError, ModelLoadingError, DeviceError
|
| 61 |
+
|
| 62 |
+
# Import utilities (existing)
|
| 63 |
from utilities import (
|
| 64 |
segment_person_hq,
|
| 65 |
refine_mask_hq,
|
|
|
|
| 69 |
validate_video_file
|
| 70 |
)
|
| 71 |
|
| 72 |
+
# Import two-stage processor if available
|
| 73 |
try:
|
| 74 |
from two_stage_processor import TwoStageProcessor, CHROMA_PRESETS
|
| 75 |
TWO_STAGE_AVAILABLE = True
|
|
|
|
| 77 |
TWO_STAGE_AVAILABLE = False
|
| 78 |
CHROMA_PRESETS = {'standard': {}}
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
class VideoProcessor:
|
| 81 |
+
"""
|
| 82 |
+
Main video processing orchestrator - coordinates all specialized components
|
| 83 |
+
"""
|
| 84 |
|
| 85 |
def __init__(self):
|
| 86 |
+
"""Initialize the video processor with all required components"""
|
|
|
|
| 87 |
self.config = ProcessingConfig()
|
| 88 |
+
self.device_manager = DeviceManager()
|
| 89 |
+
self.memory_manager = MemoryManager(self.device_manager.get_optimal_device())
|
| 90 |
+
self.model_loader = ModelLoader(self.device_manager.get_optimal_device())
|
| 91 |
+
self.audio_processor = AudioProcessor()
|
| 92 |
+
|
| 93 |
+
# Initialize core processor (will be set up after models load)
|
| 94 |
+
self.core_processor = None
|
| 95 |
self.two_stage_processor = None
|
| 96 |
+
|
| 97 |
+
# State management
|
| 98 |
self.models_loaded = False
|
| 99 |
self.loading_lock = threading.Lock()
|
| 100 |
self.cancel_event = threading.Event()
|
| 101 |
|
| 102 |
+
logger.info(f"VideoProcessor initialized on device: {self.device_manager.get_optimal_device()}")
|
| 103 |
+
|
| 104 |
def load_models(self, progress_callback: Optional[Callable] = None) -> str:
|
| 105 |
+
"""Load and validate all AI models"""
|
| 106 |
with self.loading_lock:
|
| 107 |
if self.models_loaded:
|
| 108 |
return "Models already loaded and validated"
|
| 109 |
|
| 110 |
try:
|
| 111 |
self.cancel_event.clear()
|
|
|
|
| 112 |
|
| 113 |
if progress_callback:
|
| 114 |
+
progress_callback(0.0, f"Starting model loading on {self.device_manager.get_optimal_device()}")
|
| 115 |
|
| 116 |
+
# Load models using the specialized loader
|
| 117 |
+
sam2_predictor, matanyone_model = self.model_loader.load_all_models(
|
| 118 |
+
progress_callback=progress_callback,
|
| 119 |
+
cancel_event=self.cancel_event
|
| 120 |
+
)
|
| 121 |
|
|
|
|
|
|
|
| 122 |
if self.cancel_event.is_set():
|
| 123 |
return "Model loading cancelled"
|
| 124 |
|
| 125 |
+
# Initialize core processor with loaded models
|
| 126 |
+
self.core_processor = CoreVideoProcessor(
|
| 127 |
+
sam2_predictor=sam2_predictor,
|
| 128 |
+
matanyone_model=matanyone_model,
|
| 129 |
+
config=self.config,
|
| 130 |
+
memory_manager=self.memory_manager
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
# Initialize two-stage processor if available
|
| 134 |
+
if TWO_STAGE_AVAILABLE and sam2_predictor and matanyone_model:
|
| 135 |
try:
|
| 136 |
+
self.two_stage_processor = TwoStageProcessor(sam2_predictor, matanyone_model)
|
|
|
|
|
|
|
| 137 |
logger.info("Two-stage processor initialized")
|
| 138 |
except Exception as e:
|
| 139 |
logger.warning(f"Two-stage processor init failed: {e}")
|
| 140 |
|
| 141 |
self.models_loaded = True
|
| 142 |
+
message = self.model_loader.get_load_summary()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
logger.info(message)
|
| 144 |
return message
|
| 145 |
|
| 146 |
+
except ModelLoadingError as e:
|
| 147 |
self.models_loaded = False
|
| 148 |
error_msg = f"Model loading failed: {str(e)}"
|
| 149 |
logger.error(error_msg)
|
| 150 |
return error_msg
|
| 151 |
+
except Exception as e:
|
| 152 |
+
self.models_loaded = False
|
| 153 |
+
error_msg = f"Unexpected error during model loading: {str(e)}"
|
| 154 |
+
logger.error(error_msg)
|
| 155 |
+
return error_msg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
def process_video(
|
| 158 |
self,
|
|
|
|
| 165 |
preview_mask: bool = False,
|
| 166 |
preview_greenscreen: bool = False
|
| 167 |
) -> Tuple[Optional[str], str]:
|
| 168 |
+
"""Process video with the specified parameters"""
|
| 169 |
|
| 170 |
+
if not self.models_loaded or not self.core_processor:
|
| 171 |
return None, "Models not loaded. Please load models first."
|
| 172 |
|
| 173 |
if self.cancel_event.is_set():
|
| 174 |
return None, "Processing cancelled"
|
| 175 |
|
| 176 |
+
# Validate input file
|
| 177 |
is_valid, validation_msg = validate_video_file(video_path)
|
| 178 |
if not is_valid:
|
| 179 |
return None, f"Invalid video: {validation_msg}"
|
| 180 |
|
| 181 |
try:
|
| 182 |
+
# Route to appropriate processing method
|
| 183 |
if use_two_stage and TWO_STAGE_AVAILABLE and self.two_stage_processor:
|
| 184 |
return self._process_two_stage(
|
| 185 |
video_path, background_choice, custom_background_path,
|
|
|
|
| 191 |
progress_callback, preview_mask, preview_greenscreen
|
| 192 |
)
|
| 193 |
|
| 194 |
+
except VideoProcessingError as e:
|
| 195 |
logger.error(f"Video processing failed: {e}")
|
| 196 |
return None, f"Processing failed: {str(e)}"
|
| 197 |
+
except Exception as e:
|
| 198 |
+
logger.error(f"Unexpected error during video processing: {e}")
|
| 199 |
+
return None, f"Unexpected error: {str(e)}"
|
| 200 |
|
| 201 |
def _process_single_stage(
|
| 202 |
self,
|
|
|
|
| 207 |
preview_mask: bool,
|
| 208 |
preview_greenscreen: bool
|
| 209 |
) -> Tuple[Optional[str], str]:
|
| 210 |
+
"""Process video using single-stage pipeline"""
|
| 211 |
+
|
| 212 |
+
# Process video using core processor
|
| 213 |
+
processed_video_path, process_message = self.core_processor.process_video(
|
| 214 |
+
video_path=video_path,
|
| 215 |
+
background_choice=background_choice,
|
| 216 |
+
custom_background_path=custom_background_path,
|
| 217 |
+
progress_callback=progress_callback,
|
| 218 |
+
cancel_event=self.cancel_event,
|
| 219 |
+
preview_mask=preview_mask,
|
| 220 |
+
preview_greenscreen=preview_greenscreen
|
|
|
|
|
|
|
|
|
|
| 221 |
)
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
+
if processed_video_path is None:
|
| 224 |
+
return None, process_message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
+
# Add audio if not in preview mode
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
if not (preview_mask or preview_greenscreen):
|
| 228 |
+
final_video_path = self.audio_processor.add_audio_to_video(
|
| 229 |
+
original_video=video_path,
|
| 230 |
+
processed_video=processed_video_path
|
| 231 |
+
)
|
| 232 |
else:
|
| 233 |
+
final_video_path = processed_video_path
|
| 234 |
|
| 235 |
success_msg = (
|
| 236 |
+
f"{process_message}\n"
|
| 237 |
f"Background: {background_choice}\n"
|
| 238 |
f"Mode: Single-stage\n"
|
| 239 |
+
f"Device: {self.device_manager.get_optimal_device()}"
|
| 240 |
)
|
| 241 |
|
| 242 |
+
return final_video_path, success_msg
|
| 243 |
|
| 244 |
def _process_two_stage(
|
| 245 |
self,
|
|
|
|
| 249 |
progress_callback: Optional[Callable],
|
| 250 |
chroma_preset: str
|
| 251 |
) -> Tuple[Optional[str], str]:
|
| 252 |
+
"""Process video using two-stage pipeline"""
|
| 253 |
|
| 254 |
+
# Get video dimensions for background preparation
|
| 255 |
+
import cv2
|
| 256 |
cap = cv2.VideoCapture(video_path)
|
| 257 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 258 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 259 |
cap.release()
|
| 260 |
|
| 261 |
+
# Prepare background using core processor
|
| 262 |
+
background = self.core_processor.prepare_background(
|
| 263 |
background_choice, custom_background_path, frame_width, frame_height
|
| 264 |
)
|
| 265 |
if background is None:
|
| 266 |
return None, "Failed to prepare background"
|
| 267 |
|
| 268 |
# Process with two-stage pipeline
|
| 269 |
+
import time
|
| 270 |
timestamp = int(time.time())
|
| 271 |
final_output = f"/tmp/twostage_final_{timestamp}.mp4"
|
| 272 |
|
|
|
|
| 288 |
f"Background: {background_choice}\n"
|
| 289 |
f"Preset: {chroma_preset}\n"
|
| 290 |
f"Quality: Cinema-grade\n"
|
| 291 |
+
f"Device: {self.device_manager.get_optimal_device()}"
|
| 292 |
)
|
| 293 |
|
| 294 |
return result, success_msg
|
| 295 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
def get_status(self) -> Dict[str, Any]:
|
| 297 |
+
"""Get comprehensive status of all components"""
|
| 298 |
+
base_status = {
|
| 299 |
'models_loaded': self.models_loaded,
|
|
|
|
|
|
|
| 300 |
'two_stage_available': TWO_STAGE_AVAILABLE and self.two_stage_processor is not None,
|
| 301 |
+
'device': str(self.device_manager.get_optimal_device()),
|
| 302 |
'memory_usage': self.memory_manager.get_memory_usage(),
|
| 303 |
+
'config': self.config.to_dict()
|
|
|
|
|
|
|
|
|
|
| 304 |
}
|
| 305 |
+
|
| 306 |
+
# Add model-specific status if available
|
| 307 |
+
if self.model_loader:
|
| 308 |
+
base_status.update(self.model_loader.get_status())
|
| 309 |
+
|
| 310 |
+
# Add processing status if available
|
| 311 |
+
if self.core_processor:
|
| 312 |
+
base_status.update(self.core_processor.get_status())
|
| 313 |
+
|
| 314 |
+
return base_status
|
| 315 |
|
| 316 |
def cancel_processing(self):
|
| 317 |
+
"""Cancel any ongoing processing"""
|
| 318 |
self.cancel_event.set()
|
| 319 |
logger.info("Processing cancellation requested")
|
| 320 |
+
|
| 321 |
+
def cleanup_resources(self):
|
| 322 |
+
"""Clean up all resources"""
|
| 323 |
+
self.memory_manager.cleanup_aggressive()
|
| 324 |
+
if self.model_loader:
|
| 325 |
+
self.model_loader.cleanup()
|
| 326 |
+
logger.info("Resources cleaned up")
|
| 327 |
|
| 328 |
+
# Global processor instance for application
|
| 329 |
processor = VideoProcessor()
|
| 330 |
|
| 331 |
+
# Backward compatibility functions for existing UI
|
| 332 |
def load_models_with_validation(progress_callback: Optional[Callable] = None) -> str:
|
| 333 |
+
"""Load models with validation - backward compatibility wrapper"""
|
| 334 |
return processor.load_models(progress_callback)
|
| 335 |
|
| 336 |
def process_video_fixed(
|
|
|
|
| 343 |
preview_mask: bool = False,
|
| 344 |
preview_greenscreen: bool = False
|
| 345 |
) -> Tuple[Optional[str], str]:
|
| 346 |
+
"""Process video - backward compatibility wrapper"""
|
| 347 |
return processor.process_video(
|
| 348 |
video_path, background_choice, custom_background_path,
|
| 349 |
progress_callback, use_two_stage, chroma_preset,
|
|
|
|
| 351 |
)
|
| 352 |
|
| 353 |
def get_model_status() -> Dict[str, Any]:
|
| 354 |
+
"""Get model status - backward compatibility wrapper"""
|
| 355 |
return processor.get_status()
|
| 356 |
|
| 357 |
def get_cache_status() -> Dict[str, Any]:
|
| 358 |
+
"""Get cache status - backward compatibility wrapper"""
|
| 359 |
return processor.get_status()
|
| 360 |
|
| 361 |
# For backward compatibility
|
|
|
|
| 365 |
"""Main application entry point"""
|
| 366 |
try:
|
| 367 |
logger.info("Starting Video Background Replacement application")
|
| 368 |
+
logger.info(f"Device: {processor.device_manager.get_optimal_device()}")
|
| 369 |
logger.info(f"Two-stage available: {TWO_STAGE_AVAILABLE}")
|
| 370 |
+
logger.info("Modular architecture loaded successfully")
|
| 371 |
|
| 372 |
# Import and create UI
|
| 373 |
from ui_components import create_interface
|
|
|
|
| 385 |
except Exception as e:
|
| 386 |
logger.error(f"Application startup failed: {e}")
|
| 387 |
raise
|
| 388 |
+
finally:
|
| 389 |
+
# Cleanup on exit
|
| 390 |
+
processor.cleanup_resources()
|
| 391 |
|
| 392 |
if __name__ == "__main__":
|
| 393 |
main()
|