Create models/loader.py
Browse files- models/models/loader.py +515 -0
models/models/loader.py
ADDED
|
@@ -0,0 +1,515 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Model loader for BackgroundFX Pro.
|
| 3 |
+
Handles loading, initialization, and management of ML models.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import onnxruntime as ort
|
| 9 |
+
import numpy as np
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
from typing import Dict, Optional, Any, Union, List, Tuple
|
| 12 |
+
from dataclasses import dataclass
|
| 13 |
+
import logging
|
| 14 |
+
import gc
|
| 15 |
+
import psutil
|
| 16 |
+
from functools import lru_cache
|
| 17 |
+
|
| 18 |
+
from .registry import ModelInfo, ModelFramework, ModelTask, ModelRegistry
|
| 19 |
+
from .downloader import ModelDownloader
|
| 20 |
+
|
| 21 |
+
logger = logging.getLogger(__name__)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@dataclass
|
| 25 |
+
class LoadedModel:
|
| 26 |
+
"""Container for loaded model."""
|
| 27 |
+
model_id: str
|
| 28 |
+
model: Any # Actual model object
|
| 29 |
+
framework: ModelFramework
|
| 30 |
+
device: str
|
| 31 |
+
memory_usage: int # In bytes
|
| 32 |
+
load_time: float # In seconds
|
| 33 |
+
metadata: Dict[str, Any]
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class ModelLoader:
|
| 37 |
+
"""
|
| 38 |
+
Load and manage ML models with automatic memory management.
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
def __init__(self,
|
| 42 |
+
registry: ModelRegistry,
|
| 43 |
+
device: Optional[str] = None,
|
| 44 |
+
max_memory_gb: float = 4.0,
|
| 45 |
+
enable_cache: bool = True):
|
| 46 |
+
"""
|
| 47 |
+
Initialize model loader.
|
| 48 |
+
|
| 49 |
+
Args:
|
| 50 |
+
registry: Model registry instance
|
| 51 |
+
device: Device to load models on ('cuda', 'cpu', 'auto')
|
| 52 |
+
max_memory_gb: Maximum memory usage in GB
|
| 53 |
+
enable_cache: Enable model caching
|
| 54 |
+
"""
|
| 55 |
+
self.registry = registry
|
| 56 |
+
self.downloader = ModelDownloader(registry)
|
| 57 |
+
self.max_memory_bytes = int(max_memory_gb * 1024 * 1024 * 1024)
|
| 58 |
+
self.enable_cache = enable_cache
|
| 59 |
+
|
| 60 |
+
# Device management
|
| 61 |
+
self.device = self._setup_device(device)
|
| 62 |
+
self.providers = self._setup_providers()
|
| 63 |
+
|
| 64 |
+
# Model cache
|
| 65 |
+
self.loaded_models: Dict[str, LoadedModel] = {}
|
| 66 |
+
self.current_memory_usage = 0
|
| 67 |
+
|
| 68 |
+
logger.info(f"ModelLoader initialized with device: {self.device}")
|
| 69 |
+
|
| 70 |
+
def _setup_device(self, device: Optional[str]) -> str:
|
| 71 |
+
"""Setup computation device."""
|
| 72 |
+
if device == 'auto' or device is None:
|
| 73 |
+
if torch.cuda.is_available():
|
| 74 |
+
return 'cuda'
|
| 75 |
+
elif torch.backends.mps.is_available():
|
| 76 |
+
return 'mps'
|
| 77 |
+
else:
|
| 78 |
+
return 'cpu'
|
| 79 |
+
return device
|
| 80 |
+
|
| 81 |
+
def _setup_providers(self) -> List[str]:
|
| 82 |
+
"""Setup ONNX Runtime providers."""
|
| 83 |
+
providers = []
|
| 84 |
+
|
| 85 |
+
if self.device == 'cuda':
|
| 86 |
+
providers.extend([
|
| 87 |
+
'CUDAExecutionProvider',
|
| 88 |
+
'TensorrtExecutionProvider'
|
| 89 |
+
])
|
| 90 |
+
elif self.device == 'mps':
|
| 91 |
+
providers.append('CoreMLExecutionProvider')
|
| 92 |
+
|
| 93 |
+
providers.append('CPUExecutionProvider')
|
| 94 |
+
|
| 95 |
+
return providers
|
| 96 |
+
|
| 97 |
+
def load_model(self,
|
| 98 |
+
model_id: str,
|
| 99 |
+
force_reload: bool = False,
|
| 100 |
+
device_override: Optional[str] = None) -> Optional[LoadedModel]:
|
| 101 |
+
"""
|
| 102 |
+
Load a model by ID.
|
| 103 |
+
|
| 104 |
+
Args:
|
| 105 |
+
model_id: Model ID to load
|
| 106 |
+
force_reload: Force reload even if cached
|
| 107 |
+
device_override: Override default device
|
| 108 |
+
|
| 109 |
+
Returns:
|
| 110 |
+
Loaded model or None if failed
|
| 111 |
+
"""
|
| 112 |
+
# Check cache
|
| 113 |
+
if not force_reload and model_id in self.loaded_models:
|
| 114 |
+
logger.info(f"Using cached model: {model_id}")
|
| 115 |
+
self.registry.update_model_usage(model_id)
|
| 116 |
+
return self.loaded_models[model_id]
|
| 117 |
+
|
| 118 |
+
# Get model info
|
| 119 |
+
model_info = self.registry.get_model(model_id)
|
| 120 |
+
if not model_info:
|
| 121 |
+
logger.error(f"Model not found: {model_id}")
|
| 122 |
+
return None
|
| 123 |
+
|
| 124 |
+
# Download if needed
|
| 125 |
+
if model_info.status != "available":
|
| 126 |
+
logger.info(f"Downloading model: {model_id}")
|
| 127 |
+
if not self.downloader.download_model(model_id):
|
| 128 |
+
logger.error(f"Failed to download model: {model_id}")
|
| 129 |
+
return None
|
| 130 |
+
|
| 131 |
+
# Check memory
|
| 132 |
+
if not self._check_memory_available(model_info):
|
| 133 |
+
logger.warning(f"Insufficient memory for model: {model_id}")
|
| 134 |
+
self._free_memory(model_info.memory_mb * 1024 * 1024 if model_info.memory_mb else 0)
|
| 135 |
+
|
| 136 |
+
# Load model
|
| 137 |
+
device = device_override or self.device
|
| 138 |
+
loaded = self._load_model_impl(model_info, device)
|
| 139 |
+
|
| 140 |
+
if loaded:
|
| 141 |
+
# Cache model
|
| 142 |
+
if self.enable_cache:
|
| 143 |
+
self.loaded_models[model_id] = loaded
|
| 144 |
+
self.current_memory_usage += loaded.memory_usage
|
| 145 |
+
|
| 146 |
+
# Update registry
|
| 147 |
+
self.registry.update_model_usage(model_id)
|
| 148 |
+
|
| 149 |
+
logger.info(f"Successfully loaded model: {model_id}")
|
| 150 |
+
return loaded
|
| 151 |
+
|
| 152 |
+
return None
|
| 153 |
+
|
| 154 |
+
def _load_model_impl(self, model_info: ModelInfo, device: str) -> Optional[LoadedModel]:
|
| 155 |
+
"""
|
| 156 |
+
Implementation of model loading based on framework.
|
| 157 |
+
|
| 158 |
+
Args:
|
| 159 |
+
model_info: Model information
|
| 160 |
+
device: Device to load on
|
| 161 |
+
|
| 162 |
+
Returns:
|
| 163 |
+
Loaded model or None
|
| 164 |
+
"""
|
| 165 |
+
import time
|
| 166 |
+
start_time = time.time()
|
| 167 |
+
|
| 168 |
+
try:
|
| 169 |
+
if model_info.framework == ModelFramework.PYTORCH:
|
| 170 |
+
model = self._load_pytorch_model(model_info, device)
|
| 171 |
+
elif model_info.framework == ModelFramework.ONNX:
|
| 172 |
+
model = self._load_onnx_model(model_info)
|
| 173 |
+
elif model_info.framework == ModelFramework.TFLITE:
|
| 174 |
+
model = self._load_tflite_model(model_info)
|
| 175 |
+
elif model_info.framework == ModelFramework.TENSORRT:
|
| 176 |
+
model = self._load_tensorrt_model(model_info)
|
| 177 |
+
else:
|
| 178 |
+
logger.error(f"Unsupported framework: {model_info.framework}")
|
| 179 |
+
return None
|
| 180 |
+
|
| 181 |
+
if model is None:
|
| 182 |
+
return None
|
| 183 |
+
|
| 184 |
+
# Estimate memory usage
|
| 185 |
+
memory_usage = self._estimate_model_memory(model, model_info)
|
| 186 |
+
|
| 187 |
+
loaded = LoadedModel(
|
| 188 |
+
model_id=model_info.model_id,
|
| 189 |
+
model=model,
|
| 190 |
+
framework=model_info.framework,
|
| 191 |
+
device=device,
|
| 192 |
+
memory_usage=memory_usage,
|
| 193 |
+
load_time=time.time() - start_time,
|
| 194 |
+
metadata=model_info.config
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
return loaded
|
| 198 |
+
|
| 199 |
+
except Exception as e:
|
| 200 |
+
logger.error(f"Failed to load model {model_info.model_id}: {e}")
|
| 201 |
+
return None
|
| 202 |
+
|
| 203 |
+
def _load_pytorch_model(self, model_info: ModelInfo, device: str) -> Optional[Any]:
|
| 204 |
+
"""Load PyTorch model."""
|
| 205 |
+
try:
|
| 206 |
+
model_path = Path(model_info.local_path)
|
| 207 |
+
|
| 208 |
+
# Load model
|
| 209 |
+
if model_path.suffix == '.pth':
|
| 210 |
+
# Load state dict
|
| 211 |
+
state_dict = torch.load(model_path, map_location=device)
|
| 212 |
+
|
| 213 |
+
# Create model architecture (model-specific)
|
| 214 |
+
model = self._create_model_architecture(model_info)
|
| 215 |
+
if model:
|
| 216 |
+
model.load_state_dict(state_dict)
|
| 217 |
+
else:
|
| 218 |
+
# Try loading as complete model
|
| 219 |
+
model = torch.load(model_path, map_location=device)
|
| 220 |
+
else:
|
| 221 |
+
# Load complete model
|
| 222 |
+
model = torch.load(model_path, map_location=device)
|
| 223 |
+
|
| 224 |
+
# Move to device
|
| 225 |
+
if isinstance(model, nn.Module):
|
| 226 |
+
model = model.to(device)
|
| 227 |
+
model.eval()
|
| 228 |
+
|
| 229 |
+
return model
|
| 230 |
+
|
| 231 |
+
except Exception as e:
|
| 232 |
+
logger.error(f"PyTorch model loading failed: {e}")
|
| 233 |
+
return None
|
| 234 |
+
|
| 235 |
+
def _load_onnx_model(self, model_info: ModelInfo) -> Optional[Any]:
|
| 236 |
+
"""Load ONNX model."""
|
| 237 |
+
try:
|
| 238 |
+
model_path = str(model_info.local_path)
|
| 239 |
+
|
| 240 |
+
# Create session options
|
| 241 |
+
sess_options = ort.SessionOptions()
|
| 242 |
+
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
|
| 243 |
+
|
| 244 |
+
# Add providers based on device
|
| 245 |
+
providers = self.providers
|
| 246 |
+
|
| 247 |
+
# Create inference session
|
| 248 |
+
session = ort.InferenceSession(
|
| 249 |
+
model_path,
|
| 250 |
+
sess_options=sess_options,
|
| 251 |
+
providers=providers
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
return session
|
| 255 |
+
|
| 256 |
+
except Exception as e:
|
| 257 |
+
logger.error(f"ONNX model loading failed: {e}")
|
| 258 |
+
return None
|
| 259 |
+
|
| 260 |
+
def _load_tflite_model(self, model_info: ModelInfo) -> Optional[Any]:
|
| 261 |
+
"""Load TFLite model."""
|
| 262 |
+
try:
|
| 263 |
+
import tensorflow as tf
|
| 264 |
+
|
| 265 |
+
model_path = str(model_info.local_path)
|
| 266 |
+
|
| 267 |
+
# Load TFLite model
|
| 268 |
+
interpreter = tf.lite.Interpreter(model_path=model_path)
|
| 269 |
+
interpreter.allocate_tensors()
|
| 270 |
+
|
| 271 |
+
return interpreter
|
| 272 |
+
|
| 273 |
+
except Exception as e:
|
| 274 |
+
logger.error(f"TFLite model loading failed: {e}")
|
| 275 |
+
return None
|
| 276 |
+
|
| 277 |
+
def _load_tensorrt_model(self, model_info: ModelInfo) -> Optional[Any]:
|
| 278 |
+
"""Load TensorRT model."""
|
| 279 |
+
try:
|
| 280 |
+
import tensorrt as trt
|
| 281 |
+
import pycuda.driver as cuda
|
| 282 |
+
import pycuda.autoinit
|
| 283 |
+
|
| 284 |
+
model_path = str(model_info.local_path)
|
| 285 |
+
|
| 286 |
+
# Load TensorRT engine
|
| 287 |
+
with open(model_path, 'rb') as f:
|
| 288 |
+
engine_data = f.read()
|
| 289 |
+
|
| 290 |
+
runtime = trt.Runtime(trt.Logger(trt.Logger.WARNING))
|
| 291 |
+
engine = runtime.deserialize_cuda_engine(engine_data)
|
| 292 |
+
context = engine.create_execution_context()
|
| 293 |
+
|
| 294 |
+
return {'engine': engine, 'context': context}
|
| 295 |
+
|
| 296 |
+
except Exception as e:
|
| 297 |
+
logger.error(f"TensorRT model loading failed: {e}")
|
| 298 |
+
return None
|
| 299 |
+
|
| 300 |
+
def _create_model_architecture(self, model_info: ModelInfo) -> Optional[nn.Module]:
|
| 301 |
+
"""
|
| 302 |
+
Create model architecture for specific models.
|
| 303 |
+
This would need to be implemented for each model type.
|
| 304 |
+
"""
|
| 305 |
+
# Model-specific architecture creation
|
| 306 |
+
# This is where you'd define the architecture for models
|
| 307 |
+
# that are loaded as state_dicts
|
| 308 |
+
|
| 309 |
+
if model_info.model_id == "u2net":
|
| 310 |
+
# Example: Create U2Net architecture
|
| 311 |
+
try:
|
| 312 |
+
from ..core.models import U2NET
|
| 313 |
+
return U2NET()
|
| 314 |
+
except:
|
| 315 |
+
pass
|
| 316 |
+
|
| 317 |
+
return None
|
| 318 |
+
|
| 319 |
+
def _estimate_model_memory(self, model: Any, model_info: ModelInfo) -> int:
|
| 320 |
+
"""Estimate model memory usage in bytes."""
|
| 321 |
+
if model_info.memory_mb:
|
| 322 |
+
return model_info.memory_mb * 1024 * 1024
|
| 323 |
+
|
| 324 |
+
# Estimate based on model type
|
| 325 |
+
if isinstance(model, nn.Module):
|
| 326 |
+
# PyTorch model
|
| 327 |
+
param_size = sum(p.numel() * p.element_size() for p in model.parameters())
|
| 328 |
+
buffer_size = sum(b.numel() * b.element_size() for b in model.buffers())
|
| 329 |
+
return param_size + buffer_size
|
| 330 |
+
|
| 331 |
+
elif hasattr(model, 'get_inputs'):
|
| 332 |
+
# ONNX model
|
| 333 |
+
# Rough estimate based on file size
|
| 334 |
+
file_size = Path(model_info.local_path).stat().st_size
|
| 335 |
+
return int(file_size * 2) # Account for runtime overhead
|
| 336 |
+
|
| 337 |
+
else:
|
| 338 |
+
# Default estimate
|
| 339 |
+
return 500 * 1024 * 1024 # 500MB default
|
| 340 |
+
|
| 341 |
+
def _check_memory_available(self, model_info: ModelInfo) -> bool:
|
| 342 |
+
"""Check if enough memory is available."""
|
| 343 |
+
required = model_info.memory_mb * 1024 * 1024 if model_info.memory_mb else 500 * 1024 * 1024
|
| 344 |
+
|
| 345 |
+
if self.device == 'cuda':
|
| 346 |
+
# Check GPU memory
|
| 347 |
+
try:
|
| 348 |
+
import torch
|
| 349 |
+
free_memory = torch.cuda.mem_get_info()[0]
|
| 350 |
+
return free_memory > required
|
| 351 |
+
except:
|
| 352 |
+
pass
|
| 353 |
+
|
| 354 |
+
# Check system memory
|
| 355 |
+
available = psutil.virtual_memory().available
|
| 356 |
+
return available > required
|
| 357 |
+
|
| 358 |
+
def _free_memory(self, required_bytes: int):
|
| 359 |
+
"""Free memory by unloading models."""
|
| 360 |
+
if not self.enable_cache:
|
| 361 |
+
return
|
| 362 |
+
|
| 363 |
+
# Sort models by last used time
|
| 364 |
+
models_by_usage = sorted(
|
| 365 |
+
self.loaded_models.items(),
|
| 366 |
+
key=lambda x: self.registry.models[x[0]].last_used or 0
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
freed = 0
|
| 370 |
+
for model_id, loaded_model in models_by_usage:
|
| 371 |
+
if freed >= required_bytes:
|
| 372 |
+
break
|
| 373 |
+
|
| 374 |
+
# Unload model
|
| 375 |
+
self.unload_model(model_id)
|
| 376 |
+
freed += loaded_model.memory_usage
|
| 377 |
+
|
| 378 |
+
logger.info(f"Freed memory by unloading: {model_id}")
|
| 379 |
+
|
| 380 |
+
def unload_model(self, model_id: str) -> bool:
|
| 381 |
+
"""
|
| 382 |
+
Unload a model from memory.
|
| 383 |
+
|
| 384 |
+
Args:
|
| 385 |
+
model_id: Model ID to unload
|
| 386 |
+
|
| 387 |
+
Returns:
|
| 388 |
+
True if unloaded
|
| 389 |
+
"""
|
| 390 |
+
if model_id in self.loaded_models:
|
| 391 |
+
loaded = self.loaded_models[model_id]
|
| 392 |
+
|
| 393 |
+
# Clean up model
|
| 394 |
+
if isinstance(loaded.model, nn.Module):
|
| 395 |
+
del loaded.model
|
| 396 |
+
if self.device == 'cuda':
|
| 397 |
+
torch.cuda.empty_cache()
|
| 398 |
+
else:
|
| 399 |
+
del loaded.model
|
| 400 |
+
|
| 401 |
+
# Update tracking
|
| 402 |
+
self.current_memory_usage -= loaded.memory_usage
|
| 403 |
+
del self.loaded_models[model_id]
|
| 404 |
+
|
| 405 |
+
# Force garbage collection
|
| 406 |
+
gc.collect()
|
| 407 |
+
|
| 408 |
+
logger.info(f"Unloaded model: {model_id}")
|
| 409 |
+
return True
|
| 410 |
+
|
| 411 |
+
return False
|
| 412 |
+
|
| 413 |
+
def unload_all(self):
|
| 414 |
+
"""Unload all models."""
|
| 415 |
+
model_ids = list(self.loaded_models.keys())
|
| 416 |
+
for model_id in model_ids:
|
| 417 |
+
self.unload_model(model_id)
|
| 418 |
+
|
| 419 |
+
def get_loaded_models(self) -> List[str]:
|
| 420 |
+
"""Get list of loaded model IDs."""
|
| 421 |
+
return list(self.loaded_models.keys())
|
| 422 |
+
|
| 423 |
+
def get_memory_usage(self) -> Dict[str, Any]:
|
| 424 |
+
"""Get memory usage statistics."""
|
| 425 |
+
return {
|
| 426 |
+
'current_usage_mb': self.current_memory_usage / (1024 * 1024),
|
| 427 |
+
'max_usage_mb': self.max_memory_bytes / (1024 * 1024),
|
| 428 |
+
'loaded_models': len(self.loaded_models),
|
| 429 |
+
'models': {
|
| 430 |
+
model_id: loaded.memory_usage / (1024 * 1024)
|
| 431 |
+
for model_id, loaded in self.loaded_models.items()
|
| 432 |
+
}
|
| 433 |
+
}
|
| 434 |
+
|
| 435 |
+
def predict(self,
|
| 436 |
+
model_id: str,
|
| 437 |
+
input_data: Union[np.ndarray, torch.Tensor],
|
| 438 |
+
**kwargs) -> Optional[Any]:
|
| 439 |
+
"""
|
| 440 |
+
Run prediction with a model.
|
| 441 |
+
|
| 442 |
+
Args:
|
| 443 |
+
model_id: Model ID
|
| 444 |
+
input_data: Input data
|
| 445 |
+
**kwargs: Additional arguments
|
| 446 |
+
|
| 447 |
+
Returns:
|
| 448 |
+
Prediction result
|
| 449 |
+
"""
|
| 450 |
+
# Load model if needed
|
| 451 |
+
loaded = self.load_model(model_id)
|
| 452 |
+
if not loaded:
|
| 453 |
+
return None
|
| 454 |
+
|
| 455 |
+
try:
|
| 456 |
+
if loaded.framework == ModelFramework.PYTORCH:
|
| 457 |
+
return self._predict_pytorch(loaded.model, input_data, **kwargs)
|
| 458 |
+
elif loaded.framework == ModelFramework.ONNX:
|
| 459 |
+
return self._predict_onnx(loaded.model, input_data, **kwargs)
|
| 460 |
+
elif loaded.framework == ModelFramework.TFLITE:
|
| 461 |
+
return self._predict_tflite(loaded.model, input_data, **kwargs)
|
| 462 |
+
else:
|
| 463 |
+
logger.error(f"Prediction not implemented for: {loaded.framework}")
|
| 464 |
+
return None
|
| 465 |
+
|
| 466 |
+
except Exception as e:
|
| 467 |
+
logger.error(f"Prediction failed: {e}")
|
| 468 |
+
return None
|
| 469 |
+
|
| 470 |
+
def _predict_pytorch(self, model: nn.Module, input_data: Any, **kwargs) -> Any:
|
| 471 |
+
"""Run PyTorch prediction."""
|
| 472 |
+
with torch.no_grad():
|
| 473 |
+
if not isinstance(input_data, torch.Tensor):
|
| 474 |
+
input_data = torch.from_numpy(input_data)
|
| 475 |
+
|
| 476 |
+
input_data = input_data.to(self.device)
|
| 477 |
+
output = model(input_data)
|
| 478 |
+
|
| 479 |
+
if isinstance(output, torch.Tensor):
|
| 480 |
+
output = output.cpu().numpy()
|
| 481 |
+
|
| 482 |
+
return output
|
| 483 |
+
|
| 484 |
+
def _predict_onnx(self, session: ort.InferenceSession, input_data: Any, **kwargs) -> Any:
|
| 485 |
+
"""Run ONNX prediction."""
|
| 486 |
+
if isinstance(input_data, torch.Tensor):
|
| 487 |
+
input_data = input_data.numpy()
|
| 488 |
+
|
| 489 |
+
# Get input name
|
| 490 |
+
input_name = session.get_inputs()[0].name
|
| 491 |
+
|
| 492 |
+
# Run inference
|
| 493 |
+
outputs = session.run(None, {input_name: input_data})
|
| 494 |
+
|
| 495 |
+
return outputs[0] if len(outputs) == 1 else outputs
|
| 496 |
+
|
| 497 |
+
def _predict_tflite(self, interpreter: Any, input_data: Any, **kwargs) -> Any:
|
| 498 |
+
"""Run TFLite prediction."""
|
| 499 |
+
if isinstance(input_data, torch.Tensor):
|
| 500 |
+
input_data = input_data.numpy()
|
| 501 |
+
|
| 502 |
+
# Get input/output details
|
| 503 |
+
input_details = interpreter.get_input_details()
|
| 504 |
+
output_details = interpreter.get_output_details()
|
| 505 |
+
|
| 506 |
+
# Set input
|
| 507 |
+
interpreter.set_tensor(input_details[0]['index'], input_data)
|
| 508 |
+
|
| 509 |
+
# Run inference
|
| 510 |
+
interpreter.invoke()
|
| 511 |
+
|
| 512 |
+
# Get output
|
| 513 |
+
output = interpreter.get_tensor(output_details[0]['index'])
|
| 514 |
+
|
| 515 |
+
return output
|