Create utils/device.py
Browse files- utils/device.py +410 -0
utils/device.py
ADDED
|
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Device and Hardware Management Module
|
| 3 |
+
====================================
|
| 4 |
+
|
| 5 |
+
Handles device detection, CUDA compatibility, memory management,
|
| 6 |
+
and threading configuration for BackgroundFX Pro.
|
| 7 |
+
|
| 8 |
+
Fixes:
|
| 9 |
+
- CUDA multiprocessor_count compatibility error
|
| 10 |
+
- OpenMP threading issues (OMP_NUM_THREADS)
|
| 11 |
+
- GPU memory optimization
|
| 12 |
+
- Automatic device selection
|
| 13 |
+
|
| 14 |
+
Author: BackgroundFX Pro Team
|
| 15 |
+
License: MIT
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
import os
|
| 19 |
+
import logging
|
| 20 |
+
import warnings
|
| 21 |
+
from typing import Dict, Optional, List, Tuple
|
| 22 |
+
import platform
|
| 23 |
+
import psutil
|
| 24 |
+
|
| 25 |
+
# Fix threading issues immediately at module import
|
| 26 |
+
os.environ.setdefault('OMP_NUM_THREADS', '4')
|
| 27 |
+
os.environ.setdefault('MKL_NUM_THREADS', '4')
|
| 28 |
+
os.environ.setdefault('NUMEXPR_NUM_THREADS', '4')
|
| 29 |
+
|
| 30 |
+
try:
|
| 31 |
+
import torch
|
| 32 |
+
TORCH_AVAILABLE = True
|
| 33 |
+
except ImportError:
|
| 34 |
+
TORCH_AVAILABLE = False
|
| 35 |
+
warnings.warn("PyTorch not available - using CPU-only processing")
|
| 36 |
+
|
| 37 |
+
try:
|
| 38 |
+
import cv2
|
| 39 |
+
OPENCV_AVAILABLE = True
|
| 40 |
+
except ImportError:
|
| 41 |
+
OPENCV_AVAILABLE = False
|
| 42 |
+
warnings.warn("OpenCV not available")
|
| 43 |
+
|
| 44 |
+
logger = logging.getLogger(__name__)
|
| 45 |
+
|
| 46 |
+
class DeviceManager:
|
| 47 |
+
"""Manages device detection, selection and optimization"""
|
| 48 |
+
|
| 49 |
+
def __init__(self):
|
| 50 |
+
self.device = None
|
| 51 |
+
self.device_info = {}
|
| 52 |
+
self.cuda_available = False
|
| 53 |
+
self.gpu_count = 0
|
| 54 |
+
self.memory_info = {}
|
| 55 |
+
self.threading_configured = False
|
| 56 |
+
|
| 57 |
+
def initialize(self) -> bool:
|
| 58 |
+
"""Initialize device manager and configure optimal settings"""
|
| 59 |
+
try:
|
| 60 |
+
logger.info("π§ Initializing Device Manager...")
|
| 61 |
+
|
| 62 |
+
# Fix threading first
|
| 63 |
+
self._configure_threading()
|
| 64 |
+
|
| 65 |
+
# Detect available devices
|
| 66 |
+
self._detect_devices()
|
| 67 |
+
|
| 68 |
+
# Configure CUDA if available
|
| 69 |
+
if self.cuda_available:
|
| 70 |
+
self._configure_cuda()
|
| 71 |
+
|
| 72 |
+
# Select optimal device
|
| 73 |
+
self.device = self._select_optimal_device()
|
| 74 |
+
|
| 75 |
+
# Log system information
|
| 76 |
+
self._log_system_info()
|
| 77 |
+
|
| 78 |
+
logger.info(f"β
Device Manager initialized - Using: {self.device}")
|
| 79 |
+
return True
|
| 80 |
+
|
| 81 |
+
except Exception as e:
|
| 82 |
+
logger.error(f"β Device Manager initialization failed: {e}")
|
| 83 |
+
self.device = 'cpu'
|
| 84 |
+
return False
|
| 85 |
+
|
| 86 |
+
def _configure_threading(self):
|
| 87 |
+
"""Configure threading for optimal performance"""
|
| 88 |
+
try:
|
| 89 |
+
# Set OpenMP threads
|
| 90 |
+
if 'OMP_NUM_THREADS' not in os.environ:
|
| 91 |
+
os.environ['OMP_NUM_THREADS'] = '4'
|
| 92 |
+
|
| 93 |
+
# Set MKL threads
|
| 94 |
+
if 'MKL_NUM_THREADS' not in os.environ:
|
| 95 |
+
os.environ['MKL_NUM_THREADS'] = '4'
|
| 96 |
+
|
| 97 |
+
# Set NumExpr threads
|
| 98 |
+
if 'NUMEXPR_NUM_THREADS' not in os.environ:
|
| 99 |
+
os.environ['NUMEXPR_NUM_THREADS'] = '4'
|
| 100 |
+
|
| 101 |
+
# Configure PyTorch threads
|
| 102 |
+
if TORCH_AVAILABLE:
|
| 103 |
+
torch.set_num_threads(4)
|
| 104 |
+
torch.set_num_interop_threads(4)
|
| 105 |
+
|
| 106 |
+
# Configure OpenCV threads
|
| 107 |
+
if OPENCV_AVAILABLE:
|
| 108 |
+
cv2.setNumThreads(4)
|
| 109 |
+
|
| 110 |
+
self.threading_configured = True
|
| 111 |
+
logger.info(f"β
Threading configured: OMP={os.environ.get('OMP_NUM_THREADS')}")
|
| 112 |
+
|
| 113 |
+
except Exception as e:
|
| 114 |
+
logger.warning(f"β οΈ Threading configuration warning: {e}")
|
| 115 |
+
|
| 116 |
+
def _detect_devices(self):
|
| 117 |
+
"""Detect available computing devices"""
|
| 118 |
+
try:
|
| 119 |
+
if not TORCH_AVAILABLE:
|
| 120 |
+
self.cuda_available = False
|
| 121 |
+
self.gpu_count = 0
|
| 122 |
+
return
|
| 123 |
+
|
| 124 |
+
# Check CUDA availability
|
| 125 |
+
self.cuda_available = torch.cuda.is_available()
|
| 126 |
+
self.gpu_count = torch.cuda.device_count() if self.cuda_available else 0
|
| 127 |
+
|
| 128 |
+
if self.cuda_available:
|
| 129 |
+
logger.info(f"β
CUDA available: {self.gpu_count} GPU(s)")
|
| 130 |
+
|
| 131 |
+
# Get device properties for each GPU
|
| 132 |
+
for i in range(self.gpu_count):
|
| 133 |
+
try:
|
| 134 |
+
props = self._get_cuda_properties_safe(i)
|
| 135 |
+
self.device_info[f'cuda:{i}'] = props
|
| 136 |
+
logger.info(f" GPU {i}: {props['name']} ({props['memory_gb']:.1f} GB)")
|
| 137 |
+
except Exception as e:
|
| 138 |
+
logger.warning(f" GPU {i}: Properties unavailable ({e})")
|
| 139 |
+
else:
|
| 140 |
+
logger.info("βΉοΈ CUDA not available - using CPU")
|
| 141 |
+
|
| 142 |
+
except Exception as e:
|
| 143 |
+
logger.error(f"β Device detection failed: {e}")
|
| 144 |
+
self.cuda_available = False
|
| 145 |
+
self.gpu_count = 0
|
| 146 |
+
|
| 147 |
+
def _get_cuda_properties_safe(self, device_id: int) -> Dict:
|
| 148 |
+
"""Safely get CUDA device properties with compatibility handling"""
|
| 149 |
+
try:
|
| 150 |
+
if not TORCH_AVAILABLE or not torch.cuda.is_available():
|
| 151 |
+
return {}
|
| 152 |
+
|
| 153 |
+
props = torch.cuda.get_device_properties(device_id)
|
| 154 |
+
|
| 155 |
+
# Handle different PyTorch versions for multiprocessor count
|
| 156 |
+
if hasattr(props, 'multi_processor_count'):
|
| 157 |
+
sm_count = props.multi_processor_count
|
| 158 |
+
elif hasattr(props, 'multiprocessor_count'):
|
| 159 |
+
sm_count = props.multiprocessor_count
|
| 160 |
+
else:
|
| 161 |
+
# Fallback calculation for older PyTorch versions
|
| 162 |
+
try:
|
| 163 |
+
major, minor = torch.cuda.get_device_capability(device_id)
|
| 164 |
+
# Rough estimation based on compute capability
|
| 165 |
+
sm_count = major * 8 if major >= 6 else major * 4
|
| 166 |
+
except:
|
| 167 |
+
sm_count = 'Unknown'
|
| 168 |
+
|
| 169 |
+
device_props = {
|
| 170 |
+
'name': props.name,
|
| 171 |
+
'memory_gb': props.total_memory / (1024**3),
|
| 172 |
+
'memory_bytes': props.total_memory,
|
| 173 |
+
'multiprocessor_count': sm_count,
|
| 174 |
+
'major': props.major,
|
| 175 |
+
'minor': props.minor,
|
| 176 |
+
'compute_capability': f"{props.major}.{props.minor}"
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
return device_props
|
| 180 |
+
|
| 181 |
+
except Exception as e:
|
| 182 |
+
logger.error(f"β Error getting CUDA properties for device {device_id}: {e}")
|
| 183 |
+
return {
|
| 184 |
+
'name': 'Unknown GPU',
|
| 185 |
+
'memory_gb': 0.0,
|
| 186 |
+
'memory_bytes': 0,
|
| 187 |
+
'multiprocessor_count': 'Unknown',
|
| 188 |
+
'error': str(e)
|
| 189 |
+
}
|
| 190 |
+
|
| 191 |
+
def _configure_cuda(self):
|
| 192 |
+
"""Configure CUDA for optimal performance"""
|
| 193 |
+
try:
|
| 194 |
+
if not self.cuda_available or not TORCH_AVAILABLE:
|
| 195 |
+
return
|
| 196 |
+
|
| 197 |
+
# Enable TensorRT optimization if available
|
| 198 |
+
torch.backends.cudnn.benchmark = True
|
| 199 |
+
torch.backends.cudnn.deterministic = False
|
| 200 |
+
|
| 201 |
+
# Set memory management
|
| 202 |
+
torch.cuda.empty_cache()
|
| 203 |
+
|
| 204 |
+
# Enable mixed precision if supported
|
| 205 |
+
try:
|
| 206 |
+
# Check if Automatic Mixed Precision is available
|
| 207 |
+
from torch.cuda.amp import autocast
|
| 208 |
+
logger.info("β
Mixed precision available")
|
| 209 |
+
except ImportError:
|
| 210 |
+
logger.info("βΉοΈ Mixed precision not available")
|
| 211 |
+
|
| 212 |
+
logger.info("β
CUDA optimization configured")
|
| 213 |
+
|
| 214 |
+
except Exception as e:
|
| 215 |
+
logger.warning(f"β οΈ CUDA configuration warning: {e}")
|
| 216 |
+
|
| 217 |
+
def _select_optimal_device(self) -> str:
|
| 218 |
+
"""Select the optimal device for processing"""
|
| 219 |
+
try:
|
| 220 |
+
if not TORCH_AVAILABLE:
|
| 221 |
+
return 'cpu'
|
| 222 |
+
|
| 223 |
+
if not self.cuda_available or self.gpu_count == 0:
|
| 224 |
+
return 'cpu'
|
| 225 |
+
|
| 226 |
+
# Select GPU with most memory
|
| 227 |
+
best_device = 'cuda:0'
|
| 228 |
+
best_memory = 0
|
| 229 |
+
|
| 230 |
+
for device_name, props in self.device_info.items():
|
| 231 |
+
if device_name.startswith('cuda:'):
|
| 232 |
+
memory = props.get('memory_gb', 0)
|
| 233 |
+
if memory > best_memory:
|
| 234 |
+
best_memory = memory
|
| 235 |
+
best_device = device_name
|
| 236 |
+
|
| 237 |
+
# Minimum memory check
|
| 238 |
+
if best_memory < 2.0: # Require at least 2GB
|
| 239 |
+
logger.warning(f"β οΈ GPU memory ({best_memory:.1f}GB) may be insufficient, using CPU")
|
| 240 |
+
return 'cpu'
|
| 241 |
+
|
| 242 |
+
return best_device
|
| 243 |
+
|
| 244 |
+
except Exception as e:
|
| 245 |
+
logger.error(f"β Device selection failed: {e}")
|
| 246 |
+
return 'cpu'
|
| 247 |
+
|
| 248 |
+
def _log_system_info(self):
|
| 249 |
+
"""Log comprehensive system information"""
|
| 250 |
+
try:
|
| 251 |
+
# System information
|
| 252 |
+
logger.info(f"π System: {platform.system()} {platform.release()}")
|
| 253 |
+
logger.info(f"πΎ CPU: {platform.processor()}")
|
| 254 |
+
logger.info(f"π§ RAM: {psutil.virtual_memory().total / (1024**3):.1f} GB")
|
| 255 |
+
|
| 256 |
+
# Python and package versions
|
| 257 |
+
logger.info(f"π Python: {platform.python_version()}")
|
| 258 |
+
|
| 259 |
+
if TORCH_AVAILABLE:
|
| 260 |
+
logger.info(f"π₯ PyTorch: {torch.__version__}")
|
| 261 |
+
if torch.cuda.is_available():
|
| 262 |
+
logger.info(f"β‘ CUDA: {torch.version.cuda}")
|
| 263 |
+
|
| 264 |
+
if OPENCV_AVAILABLE:
|
| 265 |
+
logger.info(f"π· OpenCV: {cv2.__version__}")
|
| 266 |
+
|
| 267 |
+
except Exception as e:
|
| 268 |
+
logger.warning(f"β οΈ System info logging failed: {e}")
|
| 269 |
+
|
| 270 |
+
def get_device(self) -> str:
|
| 271 |
+
"""Get the selected device"""
|
| 272 |
+
return self.device or 'cpu'
|
| 273 |
+
|
| 274 |
+
def get_device_info(self) -> Dict:
|
| 275 |
+
"""Get device information"""
|
| 276 |
+
return {
|
| 277 |
+
'device': self.device,
|
| 278 |
+
'cuda_available': self.cuda_available,
|
| 279 |
+
'gpu_count': self.gpu_count,
|
| 280 |
+
'device_info': self.device_info,
|
| 281 |
+
'threading_configured': self.threading_configured
|
| 282 |
+
}
|
| 283 |
+
|
| 284 |
+
def get_memory_usage(self) -> Dict:
|
| 285 |
+
"""Get current memory usage"""
|
| 286 |
+
memory_info = {
|
| 287 |
+
'system_memory_gb': psutil.virtual_memory().total / (1024**3),
|
| 288 |
+
'system_memory_used_gb': psutil.virtual_memory().used / (1024**3),
|
| 289 |
+
'system_memory_percent': psutil.virtual_memory().percent
|
| 290 |
+
}
|
| 291 |
+
|
| 292 |
+
if self.cuda_available and TORCH_AVAILABLE:
|
| 293 |
+
try:
|
| 294 |
+
for i in range(self.gpu_count):
|
| 295 |
+
allocated = torch.cuda.memory_allocated(i) / (1024**3)
|
| 296 |
+
reserved = torch.cuda.memory_reserved(i) / (1024**3)
|
| 297 |
+
total = self.device_info.get(f'cuda:{i}', {}).get('memory_gb', 0)
|
| 298 |
+
|
| 299 |
+
memory_info[f'gpu_{i}_allocated_gb'] = allocated
|
| 300 |
+
memory_info[f'gpu_{i}_reserved_gb'] = reserved
|
| 301 |
+
memory_info[f'gpu_{i}_total_gb'] = total
|
| 302 |
+
memory_info[f'gpu_{i}_percent'] = (allocated / max(total, 1)) * 100
|
| 303 |
+
|
| 304 |
+
except Exception as e:
|
| 305 |
+
logger.warning(f"β οΈ GPU memory info failed: {e}")
|
| 306 |
+
|
| 307 |
+
return memory_info
|
| 308 |
+
|
| 309 |
+
def optimize_for_model(self, model_name: str) -> Dict:
|
| 310 |
+
"""Optimize device settings for specific model"""
|
| 311 |
+
optimizations = {
|
| 312 |
+
'device': self.device,
|
| 313 |
+
'mixed_precision': False,
|
| 314 |
+
'gradient_checkpointing': False,
|
| 315 |
+
'batch_size': 1
|
| 316 |
+
}
|
| 317 |
+
|
| 318 |
+
try:
|
| 319 |
+
# Model-specific optimizations
|
| 320 |
+
if model_name.lower() == 'sam2':
|
| 321 |
+
if self.cuda_available and self._get_gpu_memory_gb() >= 8:
|
| 322 |
+
optimizations.update({
|
| 323 |
+
'mixed_precision': True,
|
| 324 |
+
'batch_size': 2
|
| 325 |
+
})
|
| 326 |
+
|
| 327 |
+
elif model_name.lower() == 'matanyone':
|
| 328 |
+
if self.cuda_available and self._get_gpu_memory_gb() >= 6:
|
| 329 |
+
optimizations.update({
|
| 330 |
+
'mixed_precision': True
|
| 331 |
+
})
|
| 332 |
+
|
| 333 |
+
logger.info(f"βοΈ Optimizations for {model_name}: {optimizations}")
|
| 334 |
+
|
| 335 |
+
except Exception as e:
|
| 336 |
+
logger.warning(f"β οΈ Model optimization failed: {e}")
|
| 337 |
+
|
| 338 |
+
return optimizations
|
| 339 |
+
|
| 340 |
+
def _get_gpu_memory_gb(self) -> float:
|
| 341 |
+
"""Get GPU memory in GB"""
|
| 342 |
+
if not self.cuda_available or not self.device_info:
|
| 343 |
+
return 0.0
|
| 344 |
+
|
| 345 |
+
device_key = self.device if self.device in self.device_info else 'cuda:0'
|
| 346 |
+
return self.device_info.get(device_key, {}).get('memory_gb', 0.0)
|
| 347 |
+
|
| 348 |
+
def cleanup(self):
|
| 349 |
+
"""Cleanup device resources"""
|
| 350 |
+
try:
|
| 351 |
+
if self.cuda_available and TORCH_AVAILABLE:
|
| 352 |
+
torch.cuda.empty_cache()
|
| 353 |
+
logger.info("β
GPU cache cleared")
|
| 354 |
+
except Exception as e:
|
| 355 |
+
logger.warning(f"β οΈ Cleanup warning: {e}")
|
| 356 |
+
|
| 357 |
+
# Global device manager instance
|
| 358 |
+
_device_manager = None
|
| 359 |
+
|
| 360 |
+
def get_device_manager() -> DeviceManager:
|
| 361 |
+
"""Get the global device manager instance"""
|
| 362 |
+
global _device_manager
|
| 363 |
+
if _device_manager is None:
|
| 364 |
+
_device_manager = DeviceManager()
|
| 365 |
+
_device_manager.initialize()
|
| 366 |
+
return _device_manager
|
| 367 |
+
|
| 368 |
+
def get_optimal_device() -> str:
|
| 369 |
+
"""Get the optimal device for processing"""
|
| 370 |
+
return get_device_manager().get_device()
|
| 371 |
+
|
| 372 |
+
def fix_cuda_compatibility():
|
| 373 |
+
"""Fix CUDA compatibility issues"""
|
| 374 |
+
try:
|
| 375 |
+
dm = get_device_manager()
|
| 376 |
+
logger.info("β
CUDA compatibility checked and fixed")
|
| 377 |
+
return dm.get_device_info()
|
| 378 |
+
except Exception as e:
|
| 379 |
+
logger.error(f"β CUDA compatibility fix failed: {e}")
|
| 380 |
+
return {'device': 'cpu', 'error': str(e)}
|
| 381 |
+
|
| 382 |
+
def setup_optimal_threading():
|
| 383 |
+
"""Setup optimal threading configuration"""
|
| 384 |
+
try:
|
| 385 |
+
dm = get_device_manager()
|
| 386 |
+
if dm.threading_configured:
|
| 387 |
+
logger.info("β
Threading already configured optimally")
|
| 388 |
+
else:
|
| 389 |
+
dm._configure_threading()
|
| 390 |
+
return True
|
| 391 |
+
except Exception as e:
|
| 392 |
+
logger.error(f"β Threading setup failed: {e}")
|
| 393 |
+
return False
|
| 394 |
+
|
| 395 |
+
def get_system_diagnostics() -> Dict:
|
| 396 |
+
"""Get comprehensive system diagnostics"""
|
| 397 |
+
dm = get_device_manager()
|
| 398 |
+
return {
|
| 399 |
+
'device_info': dm.get_device_info(),
|
| 400 |
+
'memory_usage': dm.get_memory_usage(),
|
| 401 |
+
'system_ready': dm.device is not None
|
| 402 |
+
}
|
| 403 |
+
|
| 404 |
+
# Initialize on module import
|
| 405 |
+
try:
|
| 406 |
+
_device_manager = DeviceManager()
|
| 407 |
+
_device_manager.initialize()
|
| 408 |
+
logger.info("β
Device manager initialized on import")
|
| 409 |
+
except Exception as e:
|
| 410 |
+
logger.warning(f"β οΈ Device manager initialization warning: {e}")
|