Update processing/video/video_processor.py
Browse files- processing/video/video_processor.py +54 -107
processing/video/video_processor.py
CHANGED
|
@@ -126,10 +126,24 @@ class ProcessorConfig:
|
|
| 126 |
use_windowed: bool = True # enable two-phase SAM2→MatAnyone per chunk
|
| 127 |
window_size: int = 8 # frames per window
|
| 128 |
|
| 129 |
-
# Back-compat
|
| 130 |
ProcessingConfig = ProcessorConfig
|
| 131 |
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
class _FFmpegPipe:
|
| 134 |
"""
|
| 135 |
Wrapper around an FFmpeg stdin pipe with encoder fallbacks and good error messages.
|
|
@@ -254,12 +268,10 @@ def write(self, frame_bgr: np.ndarray):
|
|
| 254 |
if frame_bgr.shape[0] != self.height or frame_bgr.shape[1] != self.width:
|
| 255 |
raise ValueError(f"Frame size mismatch. Expected {self.width}x{self.height}, got {frame_bgr.shape[1]}x{frame_bgr.shape[0]}.")
|
| 256 |
|
| 257 |
-
# ensure contiguous for tobytes()
|
| 258 |
frame_bgr = np.ascontiguousarray(frame_bgr)
|
| 259 |
try:
|
| 260 |
self.proc.stdin.write(frame_bgr.tobytes())
|
| 261 |
except Exception as e:
|
| 262 |
-
# collect stderr for diagnostics
|
| 263 |
stderr = b""
|
| 264 |
try:
|
| 265 |
if self.proc and self.proc.stderr:
|
|
@@ -284,7 +296,6 @@ def close(self):
|
|
| 284 |
self.proc.stdin.close()
|
| 285 |
except Exception:
|
| 286 |
pass
|
| 287 |
-
# drain a bit of stderr for logs
|
| 288 |
if self.proc.stderr:
|
| 289 |
try:
|
| 290 |
err = self.proc.stderr.read()
|
|
@@ -316,26 +327,23 @@ class CoreVideoProcessor:
|
|
| 316 |
def __init__(self, config: Optional[ProcessorConfig] = None, models: Optional[Any] = None):
|
| 317 |
self.log = _log
|
| 318 |
self.config = config or ProcessorConfig()
|
| 319 |
-
self.models = models
|
| 320 |
if self.models is None:
|
| 321 |
self.log.warning("CoreVideoProcessor initialized without a models provider; will use fallbacks.")
|
| 322 |
self._ffmpeg = shutil.which("ffmpeg")
|
| 323 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
# state for temporal smoothing
|
| 325 |
self._prev_mask: Optional[np.ndarray] = None
|
| 326 |
|
| 327 |
-
#
|
| 328 |
-
try:
|
| 329 |
-
if "MATANYONE_WINDOWED" in os.environ:
|
| 330 |
-
self.config.use_windowed = os.environ["MATANYONE_WINDOWED"].strip().lower() not in ("0", "false", "no")
|
| 331 |
-
if "MATANYONE_WINDOW" in os.environ:
|
| 332 |
-
self.config.window_size = max(1, int(os.environ["MATANYONE_WINDOW"]))
|
| 333 |
-
if "MAX_MODEL_SIZE" in os.environ:
|
| 334 |
-
self.config.max_model_size = max(0, int(os.environ["MAX_MODEL_SIZE"]))
|
| 335 |
-
except Exception:
|
| 336 |
-
pass
|
| 337 |
-
|
| 338 |
-
# Legacy per-frame stateful chunking (used only if use_windowed=False)
|
| 339 |
try:
|
| 340 |
self._chunk_size = max(1, int(os.environ.get("MATANYONE_CHUNK", "12")))
|
| 341 |
except Exception:
|
|
@@ -351,24 +359,22 @@ def _iou(self, a: np.ndarray, b: np.ndarray, thr: float = 0.5) -> float:
|
|
| 351 |
return (inter / union) if union else 0.0
|
| 352 |
|
| 353 |
def _harden(self, m: np.ndarray) -> np.ndarray:
|
| 354 |
-
|
| 355 |
-
g = float(self.config.mask_gamma)
|
| 356 |
if abs(g - 1.0) > 1e-6:
|
| 357 |
m = np.clip(m, 0, 1) ** g
|
| 358 |
|
| 359 |
-
lo = float(self.config.
|
| 360 |
-
hi = float(self.config.
|
| 361 |
if hi > lo + 1e-6:
|
| 362 |
m = (m - lo) / (hi - lo)
|
| 363 |
m = np.clip(m, 0.0, 1.0)
|
| 364 |
|
| 365 |
-
|
| 366 |
-
k = int(self.config.dilate_px)
|
| 367 |
if k > 0:
|
| 368 |
se = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2*k+1, 2*k+1))
|
| 369 |
m = cv2.dilate(m, se, iterations=1)
|
| 370 |
|
| 371 |
-
eb = int(self.config
|
| 372 |
if eb > 0:
|
| 373 |
m = cv2.GaussianBlur(m, (2*eb+1, 2*eb+1), 0)
|
| 374 |
|
|
@@ -379,42 +385,31 @@ def _stabilize(self, m: np.ndarray) -> np.ndarray:
|
|
| 379 |
self._prev_mask = m
|
| 380 |
return m
|
| 381 |
|
| 382 |
-
|
| 383 |
-
if self._iou(self._prev_mask, m, 0.5) <
|
| 384 |
-
# ignore this frame's mask → keep previous
|
| 385 |
return self._prev_mask
|
| 386 |
|
| 387 |
-
|
| 388 |
-
a = float(self.config.temporal_ema_alpha)
|
| 389 |
m_ema = a * self._prev_mask + (1.0 - a) * m
|
| 390 |
self._prev_mask = m_ema
|
| 391 |
return m_ema
|
| 392 |
|
| 393 |
# ---------- Single frame (fallback path) ----------
|
| 394 |
def process_frame(self, frame_bgr: np.ndarray, background_rgb: np.ndarray) -> Dict[str, Any]:
|
| 395 |
-
"""
|
| 396 |
-
Process one frame (legacy per-frame path):
|
| 397 |
-
- optionally downscale for model work,
|
| 398 |
-
- segment + refine,
|
| 399 |
-
- temporal stabilize + harden,
|
| 400 |
-
- upsample mask,
|
| 401 |
-
- composite full-res.
|
| 402 |
-
Returns dict with composited frame (BGR for writer) and mask (H,W float).
|
| 403 |
-
"""
|
| 404 |
H, W = frame_bgr.shape[:2]
|
| 405 |
max_side = max(H, W)
|
| 406 |
scale = 1.0
|
| 407 |
proc_frame_bgr = frame_bgr
|
| 408 |
|
| 409 |
# Model-only downscale
|
| 410 |
-
|
| 411 |
-
|
|
|
|
| 412 |
newW = int(round(W * scale))
|
| 413 |
newH = int(round(H * scale))
|
| 414 |
proc_frame_bgr = cv2.resize(frame_bgr, (newW, newH), interpolation=cv2.INTER_AREA)
|
| 415 |
self.log.debug(f"Model-only downscale: {W}x{H} -> {newW}x{newH} (scale={scale:.3f})")
|
| 416 |
|
| 417 |
-
# RGB for models
|
| 418 |
proc_frame_rgb = cv2.cvtColor(proc_frame_bgr, cv2.COLOR_BGR2RGB)
|
| 419 |
|
| 420 |
predictor = None
|
|
@@ -424,10 +419,8 @@ def process_frame(self, frame_bgr: np.ndarray, background_rgb: np.ndarray) -> Di
|
|
| 424 |
except Exception as e:
|
| 425 |
self.log.warning(f"SAM2 predictor unavailable: {e}")
|
| 426 |
|
| 427 |
-
# 1) segmentation (with internal fallbacks)
|
| 428 |
mask_small = segment_person_hq(proc_frame_rgb, predictor, use_sam2=True)
|
| 429 |
|
| 430 |
-
# 2) refinement (MatAnyOne if available) — stateful chunking
|
| 431 |
matanyone = None
|
| 432 |
try:
|
| 433 |
if self.models and hasattr(self.models, "get_matanyone"):
|
|
@@ -441,16 +434,14 @@ def process_frame(self, frame_bgr: np.ndarray, background_rgb: np.ndarray) -> Di
|
|
| 441 |
except Exception:
|
| 442 |
pass
|
| 443 |
|
| 444 |
-
# IMPORTANT: call order is (frame, mask, matanyone=...)
|
| 445 |
mask_small_ref = refine_mask_hq(
|
| 446 |
proc_frame_rgb,
|
| 447 |
mask_small,
|
| 448 |
matanyone=matanyone,
|
| 449 |
use_matanyone=True,
|
| 450 |
-
frame_idx=self._chunk_idx,
|
| 451 |
)
|
| 452 |
|
| 453 |
-
# advance chunk + optional defrag
|
| 454 |
self._chunk_idx = (self._chunk_idx + 1) % max(1, self._chunk_size)
|
| 455 |
if self._chunk_idx == 0:
|
| 456 |
try:
|
|
@@ -460,40 +451,25 @@ def process_frame(self, frame_bgr: np.ndarray, background_rgb: np.ndarray) -> Di
|
|
| 460 |
except Exception:
|
| 461 |
pass
|
| 462 |
|
| 463 |
-
# Stabilize + harden at model scale
|
| 464 |
mask_small_ref = np.clip(mask_small_ref.astype(np.float32), 0.0, 1.0)
|
| 465 |
mask_stable = self._stabilize(mask_small_ref)
|
| 466 |
mask_stable = self._harden(mask_stable)
|
| 467 |
|
| 468 |
-
# Upsample mask back to full-res
|
| 469 |
if scale != 1.0:
|
| 470 |
mask_full = cv2.resize(mask_stable, (W, H), interpolation=cv2.INTER_LINEAR)
|
| 471 |
else:
|
| 472 |
mask_full = mask_stable
|
| 473 |
|
| 474 |
-
# 3) compositing (helpers expect RGB inputs; return RGB)
|
| 475 |
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
|
| 476 |
out_rgb = replace_background_hq(frame_rgb, mask_full, background_rgb)
|
| 477 |
|
| 478 |
-
# Convert to BGR for writer
|
| 479 |
out_bgr = cv2.cvtColor(out_rgb, cv2.COLOR_RGB2BGR)
|
| 480 |
return {"frame": out_bgr, "mask": mask_full}
|
| 481 |
|
| 482 |
# ---------- Build background once per video ----------
|
| 483 |
def _prepare_background_from_config(
|
| 484 |
-
self,
|
| 485 |
-
bg_config: Optional[Dict[str, Any]],
|
| 486 |
-
width: int,
|
| 487 |
-
height: int
|
| 488 |
) -> np.ndarray:
|
| 489 |
-
"""
|
| 490 |
-
Accepts either:
|
| 491 |
-
- {"custom_path": "/path/to/image.png"} → load image (RGB out)
|
| 492 |
-
- {"background_choice": "office"} → preset
|
| 493 |
-
- {"gradient": {type,start,end,angle_deg}} → generated gradient
|
| 494 |
-
Returns RGB np.uint8
|
| 495 |
-
"""
|
| 496 |
-
# 1) custom image?
|
| 497 |
if bg_config and bg_config.get("custom_path"):
|
| 498 |
path = bg_config["custom_path"]
|
| 499 |
img_bgr = cv2.imread(path, cv2.IMREAD_COLOR)
|
|
@@ -503,19 +479,17 @@ def _prepare_background_from_config(
|
|
| 503 |
img_bgr = cv2.resize(img_bgr, (width, height), interpolation=cv2.INTER_LANCZOS4)
|
| 504 |
return cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
|
| 505 |
|
| 506 |
-
# 2) gradient?
|
| 507 |
if bg_config and isinstance(bg_config.get("gradient"), dict):
|
| 508 |
try:
|
| 509 |
return _create_gradient_background_local(bg_config["gradient"], width, height)
|
| 510 |
except Exception as e:
|
| 511 |
self.log.warning(f"Gradient generation failed: {e}. Falling back to preset.")
|
| 512 |
|
| 513 |
-
# 3) preset (explicit choice or default)
|
| 514 |
choice = None
|
| 515 |
if bg_config and "background_choice" in bg_config:
|
| 516 |
choice = bg_config["background_choice"]
|
| 517 |
if not choice:
|
| 518 |
-
choice = self.config
|
| 519 |
|
| 520 |
if choice not in PROFESSIONAL_BACKGROUNDS:
|
| 521 |
self.log.warning(f"Unknown background preset '{choice}'; using 'office'.")
|
|
@@ -525,11 +499,11 @@ def _prepare_background_from_config(
|
|
| 525 |
|
| 526 |
# ---------- Windowed two-phase helpers ----------
|
| 527 |
def _model_downscale(self, frame_bgr: np.ndarray) -> Tuple[np.ndarray, float]:
|
| 528 |
-
"""Apply model-only downscale; return (resized_bgr, scale)."""
|
| 529 |
H, W = frame_bgr.shape[:2]
|
| 530 |
max_side = max(H, W)
|
| 531 |
-
|
| 532 |
-
|
|
|
|
| 533 |
newW = int(round(W * s))
|
| 534 |
newH = int(round(H * s))
|
| 535 |
small = cv2.resize(frame_bgr, (newW, newH), interpolation=cv2.INTER_AREA)
|
|
@@ -537,12 +511,10 @@ def _model_downscale(self, frame_bgr: np.ndarray) -> Tuple[np.ndarray, float]:
|
|
| 537 |
return frame_bgr, 1.0
|
| 538 |
|
| 539 |
def _prepare_sam2_gpu(self, predictor):
|
| 540 |
-
"""Best-effort: ensure SAM2 is on CUDA before SAM2 phase."""
|
| 541 |
try:
|
| 542 |
-
import torch
|
| 543 |
if predictor is None or not torch.cuda.is_available():
|
| 544 |
return
|
| 545 |
-
# Try common patterns
|
| 546 |
if hasattr(predictor, "to"):
|
| 547 |
try:
|
| 548 |
predictor.to("cuda") # type: ignore[attr-defined]
|
|
@@ -558,18 +530,15 @@ def _prepare_sam2_gpu(self, predictor):
|
|
| 558 |
pass
|
| 559 |
|
| 560 |
def _release_sam2_gpu(self, predictor):
|
| 561 |
-
"""Best-effort release of SAM2 GPU residency between phases."""
|
| 562 |
try:
|
| 563 |
if predictor is None:
|
| 564 |
return
|
| 565 |
-
# Clear any sticky per-image state if exposed
|
| 566 |
for name in ("reset_image", "release_image", "clear_image", "clear_state"):
|
| 567 |
if hasattr(predictor, name) and callable(getattr(predictor, name)):
|
| 568 |
try:
|
| 569 |
getattr(predictor, name)()
|
| 570 |
except Exception:
|
| 571 |
pass
|
| 572 |
-
# Try moving large parts off-GPU (best-effort, may be no-op)
|
| 573 |
for name in ("to", "cpu"):
|
| 574 |
if hasattr(predictor, name):
|
| 575 |
try:
|
|
@@ -597,10 +566,6 @@ def process_video(
|
|
| 597 |
progress_callback: Optional[Callable[[int, int, float], None]] = None,
|
| 598 |
stop_event: Optional[threading.Event] = None
|
| 599 |
) -> Dict[str, Any]:
|
| 600 |
-
"""
|
| 601 |
-
Process a full video with live progress and optional cancel.
|
| 602 |
-
progress_callback(current_frame, total_frames, fps_live)
|
| 603 |
-
"""
|
| 604 |
ok, msg = validate_video_file(input_path)
|
| 605 |
if not ok:
|
| 606 |
raise ValueError(f"Invalid or unreadable video: {msg}")
|
|
@@ -614,20 +579,17 @@ def process_video(
|
|
| 614 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 615 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 616 |
|
| 617 |
-
fps_out = self.config
|
| 618 |
|
| 619 |
-
# Background once (RGB)
|
| 620 |
background_rgb = self._prepare_background_from_config(bg_config, width, height)
|
| 621 |
|
| 622 |
-
# reset temporal state for a new video
|
| 623 |
self._prev_mask = None
|
| 624 |
|
| 625 |
-
# Writer selection
|
| 626 |
ffmpeg_pipe: _FFmpegPipe | None = None
|
| 627 |
writer: cv2.VideoWriter | None = None
|
| 628 |
ffmpeg_failed_reason = None
|
| 629 |
|
| 630 |
-
if self.config
|
| 631 |
try:
|
| 632 |
ffmpeg_pipe = _FFmpegPipe(width, height, float(fps_out), output_path, self.config, log=self.log)
|
| 633 |
except Exception as e:
|
|
@@ -641,7 +603,6 @@ def process_video(
|
|
| 641 |
cap.release()
|
| 642 |
raise RuntimeError(f"Could not open VideoWriter for: {output_path}")
|
| 643 |
|
| 644 |
-
# Determine models and decide execution mode
|
| 645 |
predictor = None
|
| 646 |
matanyone = None
|
| 647 |
try:
|
|
@@ -656,14 +617,13 @@ def process_video(
|
|
| 656 |
except Exception as e:
|
| 657 |
self.log.warning(f"MatAnyOne unavailable: {e}")
|
| 658 |
|
| 659 |
-
use_windowed = bool(self.
|
| 660 |
|
| 661 |
frame_count = 0
|
| 662 |
start_time = time.time()
|
| 663 |
|
| 664 |
try:
|
| 665 |
if not use_windowed:
|
| 666 |
-
# --------- Legacy per-frame path (fallback) ----------
|
| 667 |
while True:
|
| 668 |
ret, frame_bgr = cap.read()
|
| 669 |
if not ret:
|
|
@@ -698,15 +658,15 @@ def process_video(
|
|
| 698 |
if progress_callback:
|
| 699 |
elapsed = time.time() - start_time
|
| 700 |
fps_live = frame_count / elapsed if elapsed > 0 else 0.0
|
| 701 |
-
try:
|
| 702 |
-
|
|
|
|
|
|
|
| 703 |
|
| 704 |
else:
|
| 705 |
-
|
| 706 |
-
WINDOW = max(1, int(self.config.window_size))
|
| 707 |
|
| 708 |
while True:
|
| 709 |
-
# Read a window of frames
|
| 710 |
frames_bgr: List[np.ndarray] = []
|
| 711 |
for _ in range(WINDOW):
|
| 712 |
ret, fr = cap.read()
|
|
@@ -715,26 +675,22 @@ def process_video(
|
|
| 715 |
frames_bgr.append(fr)
|
| 716 |
|
| 717 |
if not frames_bgr:
|
| 718 |
-
break
|
| 719 |
|
| 720 |
if stop_event is not None and stop_event.is_set():
|
| 721 |
self.log.info("Processing stopped by user request.")
|
| 722 |
break
|
| 723 |
|
| 724 |
-
# Model-only downscale frames for model work (consistent per window)
|
| 725 |
frames_small_bgr: List[np.ndarray] = []
|
| 726 |
scales: List[float] = []
|
| 727 |
for fr in frames_bgr:
|
| 728 |
fr_small, s = self._model_downscale(fr)
|
| 729 |
frames_small_bgr.append(fr_small)
|
| 730 |
scales.append(s)
|
| 731 |
-
# Use the first scale (frames normally same size)
|
| 732 |
scale = scales[0] if scales else 1.0
|
| 733 |
|
| 734 |
-
# Convert small frames to RGB for models
|
| 735 |
frames_small_rgb = [cv2.cvtColor(fb, cv2.COLOR_BGR2RGB) for fb in frames_small_bgr]
|
| 736 |
|
| 737 |
-
# -------- SAM2 phase (prime with first frame's mask) --------
|
| 738 |
self._prepare_sam2_gpu(predictor)
|
| 739 |
try:
|
| 740 |
mask_small = segment_person_hq(frames_small_rgb[0], predictor, use_sam2=True)
|
|
@@ -742,10 +698,8 @@ def process_video(
|
|
| 742 |
self.log.warning(f"SAM2 segmentation error on window start: {e}")
|
| 743 |
mask_small = segment_person_hq(frames_small_rgb[0], None, use_sam2=False)
|
| 744 |
|
| 745 |
-
# Release SAM2 GPU residency before MatAnyone phase
|
| 746 |
self._release_sam2_gpu(predictor)
|
| 747 |
|
| 748 |
-
# -------- MatAnyone phase (prime + propagate) --------
|
| 749 |
if hasattr(matanyone, "reset"):
|
| 750 |
try:
|
| 751 |
matanyone.reset()
|
|
@@ -758,29 +712,25 @@ def process_video(
|
|
| 758 |
m2d = mask_small
|
| 759 |
if m2d.ndim == 3:
|
| 760 |
m2d = m2d[..., 0]
|
| 761 |
-
alpha_small = matanyone(fr_rgb_small, m2d)
|
| 762 |
else:
|
| 763 |
-
alpha_small = matanyone(fr_rgb_small)
|
| 764 |
|
| 765 |
-
# Stabilize + harden at model scale
|
| 766 |
alpha_small = np.clip(alpha_small.astype(np.float32), 0.0, 1.0)
|
| 767 |
alpha_stable = self._stabilize(alpha_small)
|
| 768 |
alpha_harden = self._harden(alpha_stable)
|
| 769 |
|
| 770 |
-
# Upsample back to full-res
|
| 771 |
if scale != 1.0:
|
| 772 |
H, W = frames_bgr[j].shape[:2]
|
| 773 |
alpha_full = cv2.resize(alpha_harden, (W, H), interpolation=cv2.INTER_LINEAR)
|
| 774 |
else:
|
| 775 |
alpha_full = alpha_harden
|
| 776 |
|
| 777 |
-
# Composite at full-res (expects RGB)
|
| 778 |
frame_rgb_full = cv2.cvtColor(frames_bgr[j], cv2.COLOR_BGR2RGB)
|
| 779 |
out_rgb = replace_background_hq(frame_rgb_full, alpha_full, background_rgb)
|
| 780 |
out_bgr = cv2.cvtColor(out_rgb, cv2.COLOR_RGB2BGR)
|
| 781 |
out_bgr = np.ascontiguousarray(out_bgr)
|
| 782 |
|
| 783 |
-
# Write
|
| 784 |
if ffmpeg_pipe is not None:
|
| 785 |
try:
|
| 786 |
ffmpeg_pipe.write(out_bgr)
|
|
@@ -803,7 +753,6 @@ def process_video(
|
|
| 803 |
frame_count += 1
|
| 804 |
|
| 805 |
except Exception as e:
|
| 806 |
-
# If MatAnyone fails, log and fall back to SAM-only for this frame
|
| 807 |
self.log.warning(f"MatAnyone failed at window frame {j}: {e}")
|
| 808 |
if j == 0:
|
| 809 |
alpha_small_fb = np.clip(mask_small.astype(np.float32), 0.0, 1.0)
|
|
@@ -839,7 +788,6 @@ def process_video(
|
|
| 839 |
writer.write(np.ascontiguousarray(out_bgr_fb))
|
| 840 |
frame_count += 1
|
| 841 |
|
| 842 |
-
# Progress update
|
| 843 |
if progress_callback:
|
| 844 |
elapsed = time.time() - start_time
|
| 845 |
fps_live = frame_count / elapsed if elapsed > 0 else 0.0
|
|
@@ -848,7 +796,6 @@ def process_video(
|
|
| 848 |
except Exception:
|
| 849 |
pass
|
| 850 |
|
| 851 |
-
# Clean per-window buffers (CPU) and let CUDA defrag
|
| 852 |
del frames_bgr, frames_small_bgr, frames_small_rgb, mask_small
|
| 853 |
try:
|
| 854 |
import torch
|
|
|
|
| 126 |
use_windowed: bool = True # enable two-phase SAM2→MatAnyone per chunk
|
| 127 |
window_size: int = 8 # frames per window
|
| 128 |
|
| 129 |
+
# Back-compat alias used elsewhere in the app
|
| 130 |
ProcessingConfig = ProcessorConfig
|
| 131 |
|
| 132 |
|
| 133 |
+
def _env_bool(name: str, default: bool) -> bool:
|
| 134 |
+
v = os.environ.get(name, None)
|
| 135 |
+
if v is None:
|
| 136 |
+
return default
|
| 137 |
+
return str(v).strip().lower() not in ("0", "no", "false", "off", "")
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def _env_int(name: str, default: int) -> int:
|
| 141 |
+
try:
|
| 142 |
+
return int(os.environ.get(name, "").strip() or default)
|
| 143 |
+
except Exception:
|
| 144 |
+
return default
|
| 145 |
+
|
| 146 |
+
|
| 147 |
class _FFmpegPipe:
|
| 148 |
"""
|
| 149 |
Wrapper around an FFmpeg stdin pipe with encoder fallbacks and good error messages.
|
|
|
|
| 268 |
if frame_bgr.shape[0] != self.height or frame_bgr.shape[1] != self.width:
|
| 269 |
raise ValueError(f"Frame size mismatch. Expected {self.width}x{self.height}, got {frame_bgr.shape[1]}x{frame_bgr.shape[0]}.")
|
| 270 |
|
|
|
|
| 271 |
frame_bgr = np.ascontiguousarray(frame_bgr)
|
| 272 |
try:
|
| 273 |
self.proc.stdin.write(frame_bgr.tobytes())
|
| 274 |
except Exception as e:
|
|
|
|
| 275 |
stderr = b""
|
| 276 |
try:
|
| 277 |
if self.proc and self.proc.stderr:
|
|
|
|
| 296 |
self.proc.stdin.close()
|
| 297 |
except Exception:
|
| 298 |
pass
|
|
|
|
| 299 |
if self.proc.stderr:
|
| 300 |
try:
|
| 301 |
err = self.proc.stderr.read()
|
|
|
|
| 327 |
def __init__(self, config: Optional[ProcessorConfig] = None, models: Optional[Any] = None):
|
| 328 |
self.log = _log
|
| 329 |
self.config = config or ProcessorConfig()
|
| 330 |
+
self.models = models
|
| 331 |
if self.models is None:
|
| 332 |
self.log.warning("CoreVideoProcessor initialized without a models provider; will use fallbacks.")
|
| 333 |
self._ffmpeg = shutil.which("ffmpeg")
|
| 334 |
|
| 335 |
+
# -------- Back-compat safe config flags (do not require attrs on user config)
|
| 336 |
+
self._use_windowed = _env_bool(
|
| 337 |
+
"MATANYONE_WINDOWED",
|
| 338 |
+
bool(getattr(self.config, "use_windowed", False)),
|
| 339 |
+
)
|
| 340 |
+
self._window_size = max(1, _env_int("MATANYONE_WINDOW", int(getattr(self.config, "window_size", 8))))
|
| 341 |
+
self._max_model_size = int(os.environ.get("MAX_MODEL_SIZE", getattr(self.config, "max_model_size", 1280) or 0)) or None
|
| 342 |
+
|
| 343 |
# state for temporal smoothing
|
| 344 |
self._prev_mask: Optional[np.ndarray] = None
|
| 345 |
|
| 346 |
+
# Legacy per-frame stateful chunking (used only if windowed=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
try:
|
| 348 |
self._chunk_size = max(1, int(os.environ.get("MATANYONE_CHUNK", "12")))
|
| 349 |
except Exception:
|
|
|
|
| 359 |
return (inter / union) if union else 0.0
|
| 360 |
|
| 361 |
def _harden(self, m: np.ndarray) -> np.ndarray:
|
| 362 |
+
g = float(getattr(self.config, "mask_gamma", 0.90))
|
|
|
|
| 363 |
if abs(g - 1.0) > 1e-6:
|
| 364 |
m = np.clip(m, 0, 1) ** g
|
| 365 |
|
| 366 |
+
lo = float(getattr(self.config, "hard_low", 0.35))
|
| 367 |
+
hi = float(getattr(self.config, "hard_high", 0.70))
|
| 368 |
if hi > lo + 1e-6:
|
| 369 |
m = (m - lo) / (hi - lo)
|
| 370 |
m = np.clip(m, 0.0, 1.0)
|
| 371 |
|
| 372 |
+
k = int(getattr(self.config, "dilate_px", 6))
|
|
|
|
| 373 |
if k > 0:
|
| 374 |
se = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2*k+1, 2*k+1))
|
| 375 |
m = cv2.dilate(m, se, iterations=1)
|
| 376 |
|
| 377 |
+
eb = int(getattr(self.config, "edge_blur_px", 1))
|
| 378 |
if eb > 0:
|
| 379 |
m = cv2.GaussianBlur(m, (2*eb+1, 2*eb+1), 0)
|
| 380 |
|
|
|
|
| 385 |
self._prev_mask = m
|
| 386 |
return m
|
| 387 |
|
| 388 |
+
thr = float(getattr(self.config, "min_iou_to_accept", 0.05))
|
| 389 |
+
if self._iou(self._prev_mask, m, 0.5) < thr:
|
|
|
|
| 390 |
return self._prev_mask
|
| 391 |
|
| 392 |
+
a = float(getattr(self.config, "temporal_ema_alpha", 0.75))
|
|
|
|
| 393 |
m_ema = a * self._prev_mask + (1.0 - a) * m
|
| 394 |
self._prev_mask = m_ema
|
| 395 |
return m_ema
|
| 396 |
|
| 397 |
# ---------- Single frame (fallback path) ----------
|
| 398 |
def process_frame(self, frame_bgr: np.ndarray, background_rgb: np.ndarray) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
H, W = frame_bgr.shape[:2]
|
| 400 |
max_side = max(H, W)
|
| 401 |
scale = 1.0
|
| 402 |
proc_frame_bgr = frame_bgr
|
| 403 |
|
| 404 |
# Model-only downscale
|
| 405 |
+
mms = self._max_model_size
|
| 406 |
+
if mms and max_side > mms:
|
| 407 |
+
scale = mms / float(max_side)
|
| 408 |
newW = int(round(W * scale))
|
| 409 |
newH = int(round(H * scale))
|
| 410 |
proc_frame_bgr = cv2.resize(frame_bgr, (newW, newH), interpolation=cv2.INTER_AREA)
|
| 411 |
self.log.debug(f"Model-only downscale: {W}x{H} -> {newW}x{newH} (scale={scale:.3f})")
|
| 412 |
|
|
|
|
| 413 |
proc_frame_rgb = cv2.cvtColor(proc_frame_bgr, cv2.COLOR_BGR2RGB)
|
| 414 |
|
| 415 |
predictor = None
|
|
|
|
| 419 |
except Exception as e:
|
| 420 |
self.log.warning(f"SAM2 predictor unavailable: {e}")
|
| 421 |
|
|
|
|
| 422 |
mask_small = segment_person_hq(proc_frame_rgb, predictor, use_sam2=True)
|
| 423 |
|
|
|
|
| 424 |
matanyone = None
|
| 425 |
try:
|
| 426 |
if self.models and hasattr(self.models, "get_matanyone"):
|
|
|
|
| 434 |
except Exception:
|
| 435 |
pass
|
| 436 |
|
|
|
|
| 437 |
mask_small_ref = refine_mask_hq(
|
| 438 |
proc_frame_rgb,
|
| 439 |
mask_small,
|
| 440 |
matanyone=matanyone,
|
| 441 |
use_matanyone=True,
|
| 442 |
+
frame_idx=self._chunk_idx,
|
| 443 |
)
|
| 444 |
|
|
|
|
| 445 |
self._chunk_idx = (self._chunk_idx + 1) % max(1, self._chunk_size)
|
| 446 |
if self._chunk_idx == 0:
|
| 447 |
try:
|
|
|
|
| 451 |
except Exception:
|
| 452 |
pass
|
| 453 |
|
|
|
|
| 454 |
mask_small_ref = np.clip(mask_small_ref.astype(np.float32), 0.0, 1.0)
|
| 455 |
mask_stable = self._stabilize(mask_small_ref)
|
| 456 |
mask_stable = self._harden(mask_stable)
|
| 457 |
|
|
|
|
| 458 |
if scale != 1.0:
|
| 459 |
mask_full = cv2.resize(mask_stable, (W, H), interpolation=cv2.INTER_LINEAR)
|
| 460 |
else:
|
| 461 |
mask_full = mask_stable
|
| 462 |
|
|
|
|
| 463 |
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
|
| 464 |
out_rgb = replace_background_hq(frame_rgb, mask_full, background_rgb)
|
| 465 |
|
|
|
|
| 466 |
out_bgr = cv2.cvtColor(out_rgb, cv2.COLOR_RGB2BGR)
|
| 467 |
return {"frame": out_bgr, "mask": mask_full}
|
| 468 |
|
| 469 |
# ---------- Build background once per video ----------
|
| 470 |
def _prepare_background_from_config(
|
| 471 |
+
self, bg_config: Optional[Dict[str, Any]], width: int, height: int
|
|
|
|
|
|
|
|
|
|
| 472 |
) -> np.ndarray:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 473 |
if bg_config and bg_config.get("custom_path"):
|
| 474 |
path = bg_config["custom_path"]
|
| 475 |
img_bgr = cv2.imread(path, cv2.IMREAD_COLOR)
|
|
|
|
| 479 |
img_bgr = cv2.resize(img_bgr, (width, height), interpolation=cv2.INTER_LANCZOS4)
|
| 480 |
return cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
|
| 481 |
|
|
|
|
| 482 |
if bg_config and isinstance(bg_config.get("gradient"), dict):
|
| 483 |
try:
|
| 484 |
return _create_gradient_background_local(bg_config["gradient"], width, height)
|
| 485 |
except Exception as e:
|
| 486 |
self.log.warning(f"Gradient generation failed: {e}. Falling back to preset.")
|
| 487 |
|
|
|
|
| 488 |
choice = None
|
| 489 |
if bg_config and "background_choice" in bg_config:
|
| 490 |
choice = bg_config["background_choice"]
|
| 491 |
if not choice:
|
| 492 |
+
choice = getattr(self.config, "background_preset", "office")
|
| 493 |
|
| 494 |
if choice not in PROFESSIONAL_BACKGROUNDS:
|
| 495 |
self.log.warning(f"Unknown background preset '{choice}'; using 'office'.")
|
|
|
|
| 499 |
|
| 500 |
# ---------- Windowed two-phase helpers ----------
|
| 501 |
def _model_downscale(self, frame_bgr: np.ndarray) -> Tuple[np.ndarray, float]:
|
|
|
|
| 502 |
H, W = frame_bgr.shape[:2]
|
| 503 |
max_side = max(H, W)
|
| 504 |
+
mms = self._max_model_size
|
| 505 |
+
if mms and max_side > mms:
|
| 506 |
+
s = mms / float(max_side)
|
| 507 |
newW = int(round(W * s))
|
| 508 |
newH = int(round(H * s))
|
| 509 |
small = cv2.resize(frame_bgr, (newW, newH), interpolation=cv2.INTER_AREA)
|
|
|
|
| 511 |
return frame_bgr, 1.0
|
| 512 |
|
| 513 |
def _prepare_sam2_gpu(self, predictor):
|
|
|
|
| 514 |
try:
|
| 515 |
+
import torch
|
| 516 |
if predictor is None or not torch.cuda.is_available():
|
| 517 |
return
|
|
|
|
| 518 |
if hasattr(predictor, "to"):
|
| 519 |
try:
|
| 520 |
predictor.to("cuda") # type: ignore[attr-defined]
|
|
|
|
| 530 |
pass
|
| 531 |
|
| 532 |
def _release_sam2_gpu(self, predictor):
|
|
|
|
| 533 |
try:
|
| 534 |
if predictor is None:
|
| 535 |
return
|
|
|
|
| 536 |
for name in ("reset_image", "release_image", "clear_image", "clear_state"):
|
| 537 |
if hasattr(predictor, name) and callable(getattr(predictor, name)):
|
| 538 |
try:
|
| 539 |
getattr(predictor, name)()
|
| 540 |
except Exception:
|
| 541 |
pass
|
|
|
|
| 542 |
for name in ("to", "cpu"):
|
| 543 |
if hasattr(predictor, name):
|
| 544 |
try:
|
|
|
|
| 566 |
progress_callback: Optional[Callable[[int, int, float], None]] = None,
|
| 567 |
stop_event: Optional[threading.Event] = None
|
| 568 |
) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 569 |
ok, msg = validate_video_file(input_path)
|
| 570 |
if not ok:
|
| 571 |
raise ValueError(f"Invalid or unreadable video: {msg}")
|
|
|
|
| 579 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 580 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 581 |
|
| 582 |
+
fps_out = getattr(self.config, "write_fps", None) or (fps if fps and fps > 0 else 25.0)
|
| 583 |
|
|
|
|
| 584 |
background_rgb = self._prepare_background_from_config(bg_config, width, height)
|
| 585 |
|
|
|
|
| 586 |
self._prev_mask = None
|
| 587 |
|
|
|
|
| 588 |
ffmpeg_pipe: _FFmpegPipe | None = None
|
| 589 |
writer: cv2.VideoWriter | None = None
|
| 590 |
ffmpeg_failed_reason = None
|
| 591 |
|
| 592 |
+
if getattr(self.config, "use_nvenc", True) and shutil.which("ffmpeg"):
|
| 593 |
try:
|
| 594 |
ffmpeg_pipe = _FFmpegPipe(width, height, float(fps_out), output_path, self.config, log=self.log)
|
| 595 |
except Exception as e:
|
|
|
|
| 603 |
cap.release()
|
| 604 |
raise RuntimeError(f"Could not open VideoWriter for: {output_path}")
|
| 605 |
|
|
|
|
| 606 |
predictor = None
|
| 607 |
matanyone = None
|
| 608 |
try:
|
|
|
|
| 617 |
except Exception as e:
|
| 618 |
self.log.warning(f"MatAnyOne unavailable: {e}")
|
| 619 |
|
| 620 |
+
use_windowed = bool(self._use_windowed and predictor is not None and matanyone is not None)
|
| 621 |
|
| 622 |
frame_count = 0
|
| 623 |
start_time = time.time()
|
| 624 |
|
| 625 |
try:
|
| 626 |
if not use_windowed:
|
|
|
|
| 627 |
while True:
|
| 628 |
ret, frame_bgr = cap.read()
|
| 629 |
if not ret:
|
|
|
|
| 658 |
if progress_callback:
|
| 659 |
elapsed = time.time() - start_time
|
| 660 |
fps_live = frame_count / elapsed if elapsed > 0 else 0.0
|
| 661 |
+
try:
|
| 662 |
+
progress_callback(frame_count, total_frames, fps_live)
|
| 663 |
+
except Exception:
|
| 664 |
+
pass
|
| 665 |
|
| 666 |
else:
|
| 667 |
+
WINDOW = max(1, int(self._window_size))
|
|
|
|
| 668 |
|
| 669 |
while True:
|
|
|
|
| 670 |
frames_bgr: List[np.ndarray] = []
|
| 671 |
for _ in range(WINDOW):
|
| 672 |
ret, fr = cap.read()
|
|
|
|
| 675 |
frames_bgr.append(fr)
|
| 676 |
|
| 677 |
if not frames_bgr:
|
| 678 |
+
break
|
| 679 |
|
| 680 |
if stop_event is not None and stop_event.is_set():
|
| 681 |
self.log.info("Processing stopped by user request.")
|
| 682 |
break
|
| 683 |
|
|
|
|
| 684 |
frames_small_bgr: List[np.ndarray] = []
|
| 685 |
scales: List[float] = []
|
| 686 |
for fr in frames_bgr:
|
| 687 |
fr_small, s = self._model_downscale(fr)
|
| 688 |
frames_small_bgr.append(fr_small)
|
| 689 |
scales.append(s)
|
|
|
|
| 690 |
scale = scales[0] if scales else 1.0
|
| 691 |
|
|
|
|
| 692 |
frames_small_rgb = [cv2.cvtColor(fb, cv2.COLOR_BGR2RGB) for fb in frames_small_bgr]
|
| 693 |
|
|
|
|
| 694 |
self._prepare_sam2_gpu(predictor)
|
| 695 |
try:
|
| 696 |
mask_small = segment_person_hq(frames_small_rgb[0], predictor, use_sam2=True)
|
|
|
|
| 698 |
self.log.warning(f"SAM2 segmentation error on window start: {e}")
|
| 699 |
mask_small = segment_person_hq(frames_small_rgb[0], None, use_sam2=False)
|
| 700 |
|
|
|
|
| 701 |
self._release_sam2_gpu(predictor)
|
| 702 |
|
|
|
|
| 703 |
if hasattr(matanyone, "reset"):
|
| 704 |
try:
|
| 705 |
matanyone.reset()
|
|
|
|
| 712 |
m2d = mask_small
|
| 713 |
if m2d.ndim == 3:
|
| 714 |
m2d = m2d[..., 0]
|
| 715 |
+
alpha_small = matanyone(fr_rgb_small, m2d)
|
| 716 |
else:
|
| 717 |
+
alpha_small = matanyone(fr_rgb_small)
|
| 718 |
|
|
|
|
| 719 |
alpha_small = np.clip(alpha_small.astype(np.float32), 0.0, 1.0)
|
| 720 |
alpha_stable = self._stabilize(alpha_small)
|
| 721 |
alpha_harden = self._harden(alpha_stable)
|
| 722 |
|
|
|
|
| 723 |
if scale != 1.0:
|
| 724 |
H, W = frames_bgr[j].shape[:2]
|
| 725 |
alpha_full = cv2.resize(alpha_harden, (W, H), interpolation=cv2.INTER_LINEAR)
|
| 726 |
else:
|
| 727 |
alpha_full = alpha_harden
|
| 728 |
|
|
|
|
| 729 |
frame_rgb_full = cv2.cvtColor(frames_bgr[j], cv2.COLOR_BGR2RGB)
|
| 730 |
out_rgb = replace_background_hq(frame_rgb_full, alpha_full, background_rgb)
|
| 731 |
out_bgr = cv2.cvtColor(out_rgb, cv2.COLOR_RGB2BGR)
|
| 732 |
out_bgr = np.ascontiguousarray(out_bgr)
|
| 733 |
|
|
|
|
| 734 |
if ffmpeg_pipe is not None:
|
| 735 |
try:
|
| 736 |
ffmpeg_pipe.write(out_bgr)
|
|
|
|
| 753 |
frame_count += 1
|
| 754 |
|
| 755 |
except Exception as e:
|
|
|
|
| 756 |
self.log.warning(f"MatAnyone failed at window frame {j}: {e}")
|
| 757 |
if j == 0:
|
| 758 |
alpha_small_fb = np.clip(mask_small.astype(np.float32), 0.0, 1.0)
|
|
|
|
| 788 |
writer.write(np.ascontiguousarray(out_bgr_fb))
|
| 789 |
frame_count += 1
|
| 790 |
|
|
|
|
| 791 |
if progress_callback:
|
| 792 |
elapsed = time.time() - start_time
|
| 793 |
fps_live = frame_count / elapsed if elapsed > 0 else 0.0
|
|
|
|
| 796 |
except Exception:
|
| 797 |
pass
|
| 798 |
|
|
|
|
| 799 |
del frames_bgr, frames_small_bgr, frames_small_rgb, mask_small
|
| 800 |
try:
|
| 801 |
import torch
|