Create processing/matting.py
Browse files- processing/matting.py +450 -0
processing/matting.py
ADDED
|
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Advanced matting algorithms for BackgroundFX Pro.
|
| 3 |
+
Implements multiple matting techniques with automatic fallback.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
import numpy as np
|
| 10 |
+
import cv2
|
| 11 |
+
from typing import Dict, Tuple, Optional, List
|
| 12 |
+
from dataclasses import dataclass
|
| 13 |
+
import logging
|
| 14 |
+
|
| 15 |
+
from ..utils.logger import setup_logger
|
| 16 |
+
from ..utils.device import DeviceManager
|
| 17 |
+
from ..utils.config import ConfigManager
|
| 18 |
+
from ..core.models import ModelFactory, ModelType
|
| 19 |
+
from ..core.quality import QualityAnalyzer
|
| 20 |
+
from ..core.edge import EdgeRefinement
|
| 21 |
+
|
| 22 |
+
logger = setup_logger(__name__)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
@dataclass
|
| 26 |
+
class MattingConfig:
|
| 27 |
+
"""Configuration for matting operations."""
|
| 28 |
+
alpha_threshold: float = 0.5
|
| 29 |
+
erode_iterations: int = 2
|
| 30 |
+
dilate_iterations: int = 2
|
| 31 |
+
blur_radius: int = 3
|
| 32 |
+
trimap_size: int = 30
|
| 33 |
+
confidence_threshold: float = 0.7
|
| 34 |
+
use_guided_filter: bool = True
|
| 35 |
+
guided_filter_radius: int = 8
|
| 36 |
+
guided_filter_eps: float = 1e-6
|
| 37 |
+
use_temporal_smoothing: bool = False
|
| 38 |
+
temporal_window: int = 5
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class AlphaMatting:
|
| 42 |
+
"""Advanced alpha matting using multiple techniques."""
|
| 43 |
+
|
| 44 |
+
def __init__(self, config: Optional[MattingConfig] = None):
|
| 45 |
+
self.config = config or MattingConfig()
|
| 46 |
+
self.device_manager = DeviceManager()
|
| 47 |
+
self.quality_analyzer = QualityAnalyzer()
|
| 48 |
+
self.edge_refinement = EdgeRefinement()
|
| 49 |
+
|
| 50 |
+
def create_trimap(self, mask: np.ndarray,
|
| 51 |
+
dilation_size: int = None) -> np.ndarray:
|
| 52 |
+
"""
|
| 53 |
+
Create trimap from binary mask.
|
| 54 |
+
|
| 55 |
+
Args:
|
| 56 |
+
mask: Binary mask (H, W)
|
| 57 |
+
dilation_size: Size of uncertain region
|
| 58 |
+
|
| 59 |
+
Returns:
|
| 60 |
+
Trimap with 0 (background), 128 (unknown), 255 (foreground)
|
| 61 |
+
"""
|
| 62 |
+
dilation_size = dilation_size or self.config.trimap_size
|
| 63 |
+
|
| 64 |
+
# Ensure binary mask
|
| 65 |
+
if mask.dtype != np.uint8:
|
| 66 |
+
mask = (mask * 255).astype(np.uint8)
|
| 67 |
+
|
| 68 |
+
# Create trimap
|
| 69 |
+
trimap = np.copy(mask)
|
| 70 |
+
kernel = cv2.getStructuringElement(
|
| 71 |
+
cv2.MORPH_ELLIPSE,
|
| 72 |
+
(dilation_size, dilation_size)
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
# Dilate and erode to create unknown region
|
| 76 |
+
dilated = cv2.dilate(mask, kernel, iterations=1)
|
| 77 |
+
eroded = cv2.erode(mask, kernel, iterations=1)
|
| 78 |
+
|
| 79 |
+
# Set unknown region
|
| 80 |
+
trimap[dilated == 255] = 128
|
| 81 |
+
trimap[eroded == 255] = 255
|
| 82 |
+
|
| 83 |
+
return trimap
|
| 84 |
+
|
| 85 |
+
def guided_filter(self, image: np.ndarray,
|
| 86 |
+
guide: np.ndarray,
|
| 87 |
+
radius: int = None,
|
| 88 |
+
eps: float = None) -> np.ndarray:
|
| 89 |
+
"""
|
| 90 |
+
Apply guided filter for edge-preserving smoothing.
|
| 91 |
+
|
| 92 |
+
Args:
|
| 93 |
+
image: Input image to filter
|
| 94 |
+
guide: Guide image (usually RGB image)
|
| 95 |
+
radius: Filter radius
|
| 96 |
+
eps: Regularization parameter
|
| 97 |
+
|
| 98 |
+
Returns:
|
| 99 |
+
Filtered image
|
| 100 |
+
"""
|
| 101 |
+
radius = radius or self.config.guided_filter_radius
|
| 102 |
+
eps = eps or self.config.guided_filter_eps
|
| 103 |
+
|
| 104 |
+
if len(guide.shape) == 3:
|
| 105 |
+
guide = cv2.cvtColor(guide, cv2.COLOR_BGR2GRAY)
|
| 106 |
+
|
| 107 |
+
# Convert to float32
|
| 108 |
+
guide = guide.astype(np.float32) / 255.0
|
| 109 |
+
image = image.astype(np.float32) / 255.0
|
| 110 |
+
|
| 111 |
+
# Box filter helper
|
| 112 |
+
def box_filter(img, r):
|
| 113 |
+
return cv2.boxFilter(img, -1, (r, r))
|
| 114 |
+
|
| 115 |
+
# Guided filter implementation
|
| 116 |
+
mean_I = box_filter(guide, radius)
|
| 117 |
+
mean_p = box_filter(image, radius)
|
| 118 |
+
mean_Ip = box_filter(guide * image, radius)
|
| 119 |
+
cov_Ip = mean_Ip - mean_I * mean_p
|
| 120 |
+
|
| 121 |
+
mean_II = box_filter(guide * guide, radius)
|
| 122 |
+
var_I = mean_II - mean_I * mean_I
|
| 123 |
+
|
| 124 |
+
a = cov_Ip / (var_I + eps)
|
| 125 |
+
b = mean_p - a * mean_I
|
| 126 |
+
|
| 127 |
+
mean_a = box_filter(a, radius)
|
| 128 |
+
mean_b = box_filter(b, radius)
|
| 129 |
+
|
| 130 |
+
output = mean_a * guide + mean_b
|
| 131 |
+
return np.clip(output * 255, 0, 255).astype(np.uint8)
|
| 132 |
+
|
| 133 |
+
def closed_form_matting(self, image: np.ndarray,
|
| 134 |
+
trimap: np.ndarray) -> np.ndarray:
|
| 135 |
+
"""
|
| 136 |
+
Closed-form matting using Laplacian matrix.
|
| 137 |
+
Simplified version for real-time processing.
|
| 138 |
+
|
| 139 |
+
Args:
|
| 140 |
+
image: RGB image
|
| 141 |
+
trimap: Trimap with known regions
|
| 142 |
+
|
| 143 |
+
Returns:
|
| 144 |
+
Alpha matte
|
| 145 |
+
"""
|
| 146 |
+
h, w = trimap.shape
|
| 147 |
+
|
| 148 |
+
# Initialize alpha with trimap
|
| 149 |
+
alpha = np.copy(trimap).astype(np.float32) / 255.0
|
| 150 |
+
|
| 151 |
+
# Known regions
|
| 152 |
+
is_fg = trimap == 255
|
| 153 |
+
is_bg = trimap == 0
|
| 154 |
+
is_unknown = trimap == 128
|
| 155 |
+
|
| 156 |
+
if not np.any(is_unknown):
|
| 157 |
+
return alpha
|
| 158 |
+
|
| 159 |
+
# Simple propagation from known to unknown regions
|
| 160 |
+
# Using distance transform for efficiency
|
| 161 |
+
dist_fg = cv2.distanceTransform(
|
| 162 |
+
is_fg.astype(np.uint8),
|
| 163 |
+
cv2.DIST_L2, 5
|
| 164 |
+
)
|
| 165 |
+
dist_bg = cv2.distanceTransform(
|
| 166 |
+
is_bg.astype(np.uint8),
|
| 167 |
+
cv2.DIST_L2, 5
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# Normalize distances
|
| 171 |
+
total_dist = dist_fg + dist_bg + 1e-10
|
| 172 |
+
alpha_unknown = dist_fg / total_dist
|
| 173 |
+
|
| 174 |
+
# Apply only to unknown regions
|
| 175 |
+
alpha[is_unknown] = alpha_unknown[is_unknown]
|
| 176 |
+
|
| 177 |
+
# Apply guided filter for smoothing
|
| 178 |
+
if self.config.use_guided_filter:
|
| 179 |
+
alpha = self.guided_filter(
|
| 180 |
+
(alpha * 255).astype(np.uint8),
|
| 181 |
+
image
|
| 182 |
+
) / 255.0
|
| 183 |
+
|
| 184 |
+
return np.clip(alpha, 0, 1)
|
| 185 |
+
|
| 186 |
+
def deep_matting(self, image: np.ndarray,
|
| 187 |
+
mask: np.ndarray,
|
| 188 |
+
model: Optional[nn.Module] = None) -> np.ndarray:
|
| 189 |
+
"""
|
| 190 |
+
Apply deep learning-based matting refinement.
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
image: RGB image
|
| 194 |
+
mask: Initial mask
|
| 195 |
+
model: Optional pre-trained model
|
| 196 |
+
|
| 197 |
+
Returns:
|
| 198 |
+
Refined alpha matte
|
| 199 |
+
"""
|
| 200 |
+
device = self.device_manager.get_device()
|
| 201 |
+
|
| 202 |
+
# Prepare input
|
| 203 |
+
h, w = image.shape[:2]
|
| 204 |
+
|
| 205 |
+
# Resize for model input
|
| 206 |
+
input_size = (512, 512)
|
| 207 |
+
image_resized = cv2.resize(image, input_size)
|
| 208 |
+
mask_resized = cv2.resize(mask, input_size)
|
| 209 |
+
|
| 210 |
+
# Convert to tensor
|
| 211 |
+
image_tensor = torch.from_numpy(
|
| 212 |
+
image_resized.transpose(2, 0, 1)
|
| 213 |
+
).float().unsqueeze(0) / 255.0
|
| 214 |
+
|
| 215 |
+
mask_tensor = torch.from_numpy(mask_resized).float().unsqueeze(0).unsqueeze(0) / 255.0
|
| 216 |
+
|
| 217 |
+
# Move to device
|
| 218 |
+
image_tensor = image_tensor.to(device)
|
| 219 |
+
mask_tensor = mask_tensor.to(device)
|
| 220 |
+
|
| 221 |
+
# If no model provided, use simple refinement
|
| 222 |
+
if model is None:
|
| 223 |
+
# Simple CNN-based refinement
|
| 224 |
+
with torch.no_grad():
|
| 225 |
+
# Concatenate image and mask
|
| 226 |
+
x = torch.cat([image_tensor, mask_tensor], dim=1)
|
| 227 |
+
|
| 228 |
+
# Simple refinement network simulation
|
| 229 |
+
refined = self._simple_refine_network(x)
|
| 230 |
+
|
| 231 |
+
# Convert back to numpy
|
| 232 |
+
alpha = refined.squeeze().cpu().numpy()
|
| 233 |
+
else:
|
| 234 |
+
with torch.no_grad():
|
| 235 |
+
alpha = model(image_tensor, mask_tensor)
|
| 236 |
+
alpha = alpha.squeeze().cpu().numpy()
|
| 237 |
+
|
| 238 |
+
# Resize back to original size
|
| 239 |
+
alpha = cv2.resize(alpha, (w, h))
|
| 240 |
+
|
| 241 |
+
return np.clip(alpha, 0, 1)
|
| 242 |
+
|
| 243 |
+
def _simple_refine_network(self, x: torch.Tensor) -> torch.Tensor:
|
| 244 |
+
"""Simple refinement network for demonstration."""
|
| 245 |
+
# Extract mask channel
|
| 246 |
+
mask = x[:, 3:4, :, :]
|
| 247 |
+
|
| 248 |
+
# Apply series of filters
|
| 249 |
+
refined = mask
|
| 250 |
+
|
| 251 |
+
# Edge-aware smoothing
|
| 252 |
+
for _ in range(3):
|
| 253 |
+
refined = F.avg_pool2d(refined, 3, stride=1, padding=1)
|
| 254 |
+
refined = torch.sigmoid((refined - 0.5) * 10)
|
| 255 |
+
|
| 256 |
+
return refined
|
| 257 |
+
|
| 258 |
+
def morphological_refinement(self, alpha: np.ndarray) -> np.ndarray:
|
| 259 |
+
"""
|
| 260 |
+
Apply morphological operations for refinement.
|
| 261 |
+
|
| 262 |
+
Args:
|
| 263 |
+
alpha: Alpha matte
|
| 264 |
+
|
| 265 |
+
Returns:
|
| 266 |
+
Refined alpha matte
|
| 267 |
+
"""
|
| 268 |
+
# Convert to uint8
|
| 269 |
+
alpha_uint8 = (alpha * 255).astype(np.uint8)
|
| 270 |
+
|
| 271 |
+
# Morphological operations
|
| 272 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
| 273 |
+
|
| 274 |
+
# Remove small holes
|
| 275 |
+
alpha_uint8 = cv2.morphologyEx(
|
| 276 |
+
alpha_uint8, cv2.MORPH_CLOSE, kernel,
|
| 277 |
+
iterations=self.config.erode_iterations
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
# Remove small components
|
| 281 |
+
alpha_uint8 = cv2.morphologyEx(
|
| 282 |
+
alpha_uint8, cv2.MORPH_OPEN, kernel,
|
| 283 |
+
iterations=self.config.dilate_iterations
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
# Smooth boundaries
|
| 287 |
+
if self.config.blur_radius > 0:
|
| 288 |
+
alpha_uint8 = cv2.GaussianBlur(
|
| 289 |
+
alpha_uint8,
|
| 290 |
+
(self.config.blur_radius * 2 + 1, self.config.blur_radius * 2 + 1),
|
| 291 |
+
0
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
return alpha_uint8.astype(np.float32) / 255.0
|
| 295 |
+
|
| 296 |
+
def process(self, image: np.ndarray,
|
| 297 |
+
mask: np.ndarray,
|
| 298 |
+
method: str = 'auto') -> Dict[str, np.ndarray]:
|
| 299 |
+
"""
|
| 300 |
+
Process image with selected matting method.
|
| 301 |
+
|
| 302 |
+
Args:
|
| 303 |
+
image: RGB image
|
| 304 |
+
mask: Initial segmentation mask
|
| 305 |
+
method: Matting method ('auto', 'trimap', 'deep', 'guided')
|
| 306 |
+
|
| 307 |
+
Returns:
|
| 308 |
+
Dictionary with alpha matte and confidence
|
| 309 |
+
"""
|
| 310 |
+
try:
|
| 311 |
+
# Analyze quality
|
| 312 |
+
quality_metrics = self.quality_analyzer.analyze_frame(image)
|
| 313 |
+
|
| 314 |
+
# Select method based on quality
|
| 315 |
+
if method == 'auto':
|
| 316 |
+
if quality_metrics['blur_score'] > 50:
|
| 317 |
+
method = 'guided'
|
| 318 |
+
elif quality_metrics['edge_clarity'] > 0.7:
|
| 319 |
+
method = 'trimap'
|
| 320 |
+
else:
|
| 321 |
+
method = 'deep'
|
| 322 |
+
|
| 323 |
+
logger.info(f"Using matting method: {method}")
|
| 324 |
+
|
| 325 |
+
# Apply selected method
|
| 326 |
+
if method == 'trimap':
|
| 327 |
+
trimap = self.create_trimap(mask)
|
| 328 |
+
alpha = self.closed_form_matting(image, trimap)
|
| 329 |
+
|
| 330 |
+
elif method == 'deep':
|
| 331 |
+
alpha = self.deep_matting(image, mask)
|
| 332 |
+
|
| 333 |
+
elif method == 'guided':
|
| 334 |
+
alpha = mask.astype(np.float32) / 255.0
|
| 335 |
+
if self.config.use_guided_filter:
|
| 336 |
+
alpha = self.guided_filter(
|
| 337 |
+
(alpha * 255).astype(np.uint8),
|
| 338 |
+
image
|
| 339 |
+
) / 255.0
|
| 340 |
+
else:
|
| 341 |
+
# Default to simple refinement
|
| 342 |
+
alpha = mask.astype(np.float32) / 255.0
|
| 343 |
+
|
| 344 |
+
# Apply morphological refinement
|
| 345 |
+
alpha = self.morphological_refinement(alpha)
|
| 346 |
+
|
| 347 |
+
# Edge refinement
|
| 348 |
+
alpha = self.edge_refinement.refine_edges(
|
| 349 |
+
image,
|
| 350 |
+
(alpha * 255).astype(np.uint8)
|
| 351 |
+
) / 255.0
|
| 352 |
+
|
| 353 |
+
# Calculate confidence
|
| 354 |
+
confidence = self._calculate_confidence(alpha, quality_metrics)
|
| 355 |
+
|
| 356 |
+
return {
|
| 357 |
+
'alpha': alpha,
|
| 358 |
+
'confidence': confidence,
|
| 359 |
+
'method_used': method,
|
| 360 |
+
'quality_metrics': quality_metrics
|
| 361 |
+
}
|
| 362 |
+
|
| 363 |
+
except Exception as e:
|
| 364 |
+
logger.error(f"Matting processing failed: {e}")
|
| 365 |
+
# Return original mask as fallback
|
| 366 |
+
return {
|
| 367 |
+
'alpha': mask.astype(np.float32) / 255.0,
|
| 368 |
+
'confidence': 0.0,
|
| 369 |
+
'method_used': 'fallback',
|
| 370 |
+
'error': str(e)
|
| 371 |
+
}
|
| 372 |
+
|
| 373 |
+
def _calculate_confidence(self, alpha: np.ndarray,
|
| 374 |
+
quality_metrics: Dict) -> float:
|
| 375 |
+
"""Calculate confidence score for the matting result."""
|
| 376 |
+
# Base confidence from quality metrics
|
| 377 |
+
confidence = quality_metrics.get('overall_quality', 0.5)
|
| 378 |
+
|
| 379 |
+
# Adjust based on alpha distribution
|
| 380 |
+
alpha_mean = np.mean(alpha)
|
| 381 |
+
alpha_std = np.std(alpha)
|
| 382 |
+
|
| 383 |
+
# Good matting should have clear separation
|
| 384 |
+
if 0.3 < alpha_mean < 0.7 and alpha_std > 0.3:
|
| 385 |
+
confidence *= 1.2
|
| 386 |
+
|
| 387 |
+
# Check for edge clarity
|
| 388 |
+
edges = cv2.Canny((alpha * 255).astype(np.uint8), 50, 150)
|
| 389 |
+
edge_ratio = np.sum(edges > 0) / edges.size
|
| 390 |
+
|
| 391 |
+
if edge_ratio < 0.1: # Clear boundaries
|
| 392 |
+
confidence *= 1.1
|
| 393 |
+
|
| 394 |
+
return np.clip(confidence, 0.0, 1.0)
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
class CompositingEngine:
|
| 398 |
+
"""Handle alpha compositing and blending."""
|
| 399 |
+
|
| 400 |
+
def __init__(self):
|
| 401 |
+
self.logger = setup_logger(f"{__name__}.CompositingEngine")
|
| 402 |
+
|
| 403 |
+
def composite(self, foreground: np.ndarray,
|
| 404 |
+
background: np.ndarray,
|
| 405 |
+
alpha: np.ndarray) -> np.ndarray:
|
| 406 |
+
"""
|
| 407 |
+
Composite foreground over background using alpha.
|
| 408 |
+
|
| 409 |
+
Args:
|
| 410 |
+
foreground: Foreground image (H, W, 3)
|
| 411 |
+
background: Background image (H, W, 3)
|
| 412 |
+
alpha: Alpha matte (H, W) or (H, W, 1)
|
| 413 |
+
|
| 414 |
+
Returns:
|
| 415 |
+
Composited image
|
| 416 |
+
"""
|
| 417 |
+
# Ensure alpha is 3-channel
|
| 418 |
+
if len(alpha.shape) == 2:
|
| 419 |
+
alpha = np.expand_dims(alpha, axis=2)
|
| 420 |
+
if alpha.shape[2] == 1:
|
| 421 |
+
alpha = np.repeat(alpha, 3, axis=2)
|
| 422 |
+
|
| 423 |
+
# Ensure float32
|
| 424 |
+
fg = foreground.astype(np.float32) / 255.0
|
| 425 |
+
bg = background.astype(np.float32) / 255.0
|
| 426 |
+
a = alpha.astype(np.float32)
|
| 427 |
+
|
| 428 |
+
if a.max() > 1.0:
|
| 429 |
+
a = a / 255.0
|
| 430 |
+
|
| 431 |
+
# Alpha blending
|
| 432 |
+
result = fg * a + bg * (1 - a)
|
| 433 |
+
|
| 434 |
+
# Convert back to uint8
|
| 435 |
+
result = np.clip(result * 255, 0, 255).astype(np.uint8)
|
| 436 |
+
|
| 437 |
+
return result
|
| 438 |
+
|
| 439 |
+
def premultiply_alpha(self, image: np.ndarray,
|
| 440 |
+
alpha: np.ndarray) -> np.ndarray:
|
| 441 |
+
"""Premultiply image by alpha channel."""
|
| 442 |
+
if len(alpha.shape) == 2:
|
| 443 |
+
alpha = np.expand_dims(alpha, axis=2)
|
| 444 |
+
|
| 445 |
+
result = image.astype(np.float32) * alpha.astype(np.float32)
|
| 446 |
+
|
| 447 |
+
if alpha.max() > 1.0:
|
| 448 |
+
result = result / 255.0
|
| 449 |
+
|
| 450 |
+
return np.clip(result, 0, 255).astype(np.uint8)
|