Update utils/cv_processing.py
Browse files- utils/cv_processing.py +90 -1349
utils/cv_processing.py
CHANGED
|
@@ -1,1370 +1,111 @@
|
|
|
|
|
| 1 |
"""
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
import
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
logger = logging.getLogger(__name__)
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
#
|
| 22 |
-
#
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
#
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
"
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
"type": "gradient",
|
| 52 |
-
"colors": ["#1e3c72", "#2a5298", "#3498db"],
|
| 53 |
-
"direction": "radial",
|
| 54 |
-
"description": "Broadcast-quality blue studio",
|
| 55 |
-
"brightness": 0.9,
|
| 56 |
-
"contrast": 1.2
|
| 57 |
-
},
|
| 58 |
-
"studio_green": {
|
| 59 |
-
"name": "Broadcast Green",
|
| 60 |
-
"type": "color",
|
| 61 |
-
"colors": ["#00b894"],
|
| 62 |
-
"chroma_key": True,
|
| 63 |
-
"description": "Professional green screen replacement",
|
| 64 |
-
"brightness": 1.0,
|
| 65 |
-
"contrast": 1.0
|
| 66 |
-
},
|
| 67 |
-
"minimalist": {
|
| 68 |
-
"name": "Minimalist White",
|
| 69 |
-
"type": "gradient",
|
| 70 |
-
"colors": ["#ffffff", "#f1f2f6", "#ddd"],
|
| 71 |
-
"direction": "soft_radial",
|
| 72 |
-
"description": "Clean, minimal background",
|
| 73 |
-
"brightness": 0.98,
|
| 74 |
-
"contrast": 0.9
|
| 75 |
-
},
|
| 76 |
-
"warm_gradient": {
|
| 77 |
-
"name": "Warm Sunset",
|
| 78 |
-
"type": "gradient",
|
| 79 |
-
"colors": ["#ff7675", "#fd79a8", "#fdcb6e"],
|
| 80 |
-
"direction": "diagonal",
|
| 81 |
-
"description": "Warm, inviting atmosphere",
|
| 82 |
-
"brightness": 0.85,
|
| 83 |
-
"contrast": 1.15
|
| 84 |
-
},
|
| 85 |
-
"tech_dark": {
|
| 86 |
-
"name": "Tech Dark",
|
| 87 |
-
"type": "gradient",
|
| 88 |
-
"colors": ["#0c0c0c", "#2d3748", "#4a5568"],
|
| 89 |
-
"direction": "vertical",
|
| 90 |
-
"description": "Modern tech/gaming setup",
|
| 91 |
-
"brightness": 0.7,
|
| 92 |
-
"contrast": 1.3
|
| 93 |
-
}
|
| 94 |
-
}
|
| 95 |
-
|
| 96 |
-
# ============================================================================
|
| 97 |
-
# CUSTOM EXCEPTIONS
|
| 98 |
-
# ============================================================================
|
| 99 |
-
|
| 100 |
-
class SegmentationError(Exception):
|
| 101 |
-
"""Custom exception for segmentation failures"""
|
| 102 |
-
pass
|
| 103 |
-
|
| 104 |
-
class MaskRefinementError(Exception):
|
| 105 |
-
"""Custom exception for mask refinement failures"""
|
| 106 |
-
pass
|
| 107 |
-
|
| 108 |
-
class BackgroundReplacementError(Exception):
|
| 109 |
-
"""Custom exception for background replacement failures"""
|
| 110 |
-
pass
|
| 111 |
-
|
| 112 |
-
# ============================================================================
|
| 113 |
-
# LETTERBOX FIT (RGB in, RGB out) for custom background images
|
| 114 |
-
# ============================================================================
|
| 115 |
-
|
| 116 |
-
def _fit_image_letterbox(img_rgb: np.ndarray, dst_w: int, dst_h: int, fill=(32, 32, 32)) -> np.ndarray:
|
| 117 |
-
h, w = img_rgb.shape[:2]
|
| 118 |
-
if h == 0 or w == 0:
|
| 119 |
-
return np.full((dst_h, dst_w, 3), fill, dtype=np.uint8)
|
| 120 |
-
|
| 121 |
-
src_aspect = w / max(1, h)
|
| 122 |
-
dst_aspect = dst_w / max(1, dst_h)
|
| 123 |
-
|
| 124 |
-
if src_aspect > dst_aspect:
|
| 125 |
-
new_w = dst_w
|
| 126 |
-
new_h = int(round(dst_w / src_aspect))
|
| 127 |
-
else:
|
| 128 |
-
new_h = dst_h
|
| 129 |
-
new_w = int(round(dst_h * src_aspect))
|
| 130 |
-
|
| 131 |
-
resized = cv2.resize(img_rgb, (new_w, new_h), interpolation=cv2.INTER_AREA)
|
| 132 |
-
canvas = np.full((dst_h, dst_w, 3), fill, dtype=np.uint8)
|
| 133 |
-
y0 = (dst_h - new_h) // 2
|
| 134 |
-
x0 = (dst_w - new_w) // 2
|
| 135 |
-
canvas[y0:y0+new_h, x0:x0+new_w] = resized
|
| 136 |
-
return canvas
|
| 137 |
-
|
| 138 |
-
# ============================================================================
|
| 139 |
-
# MAIN SEGMENTATION FUNCTIONS
|
| 140 |
-
# ============================================================================
|
| 141 |
-
|
| 142 |
-
def segment_person_hq(image: np.ndarray, predictor: Any, fallback_enabled: bool = True) -> np.ndarray:
|
| 143 |
-
"""High-quality person segmentation with intelligent automation and robust cascade"""
|
| 144 |
-
if not USE_ENHANCED_SEGMENTATION:
|
| 145 |
-
return segment_person_hq_original(image, predictor, fallback_enabled)
|
| 146 |
-
|
| 147 |
-
logger.debug("Using ENHANCED segmentation with intelligent automation")
|
| 148 |
-
|
| 149 |
-
if image is None or image.size == 0:
|
| 150 |
-
raise SegmentationError("Invalid input image")
|
| 151 |
-
|
| 152 |
-
try:
|
| 153 |
-
# 1) SAM2 (if available)
|
| 154 |
-
if predictor and hasattr(predictor, 'set_image') and hasattr(predictor, 'predict'):
|
| 155 |
-
try:
|
| 156 |
-
predictor.set_image(image)
|
| 157 |
-
if USE_INTELLIGENT_PROMPTING:
|
| 158 |
-
mask = _segment_with_intelligent_prompts(image, predictor, fallback_enabled=True)
|
| 159 |
-
else:
|
| 160 |
-
mask = _segment_with_basic_prompts(image, predictor, fallback_enabled=True)
|
| 161 |
-
|
| 162 |
-
if USE_ITERATIVE_REFINEMENT and mask is not None:
|
| 163 |
-
mask = _auto_refine_mask_iteratively(image, mask, predictor)
|
| 164 |
-
|
| 165 |
-
if _validate_mask_quality(mask, image.shape[:2]):
|
| 166 |
-
logger.debug("SAM2 mask accepted by validator")
|
| 167 |
-
return mask
|
| 168 |
-
logger.warning("SAM2 mask failed validation; cascading to classical methods.")
|
| 169 |
-
except Exception as e:
|
| 170 |
-
logger.warning(f"SAM2 segmentation error: {e}")
|
| 171 |
-
|
| 172 |
-
# 2) Classical cascade when SAM2 is absent/weak
|
| 173 |
-
classical = _classical_segmentation_cascade(image)
|
| 174 |
-
if _validate_mask_quality(classical, image.shape[:2]):
|
| 175 |
-
logger.debug("Classical cascade mask accepted by validator")
|
| 176 |
-
return classical
|
| 177 |
-
|
| 178 |
-
logger.warning("Classical cascade produced weak mask; using geometric fallback.")
|
| 179 |
-
return _geometric_person_mask(image)
|
| 180 |
-
|
| 181 |
-
except Exception as e:
|
| 182 |
-
logger.error(f"Unexpected segmentation error: {e}")
|
| 183 |
-
if fallback_enabled:
|
| 184 |
-
return _geometric_person_mask(image)
|
| 185 |
-
else:
|
| 186 |
-
raise SegmentationError(f"Unexpected error: {e}")
|
| 187 |
-
|
| 188 |
-
def segment_person_hq_original(image: np.ndarray, predictor: Any, fallback_enabled: bool = True) -> np.ndarray:
|
| 189 |
-
"""Original version of person segmentation for rollback"""
|
| 190 |
-
if image is None or image.size == 0:
|
| 191 |
-
raise SegmentationError("Invalid input image")
|
| 192 |
-
|
| 193 |
-
try:
|
| 194 |
-
# SAFE PREDICTOR CHECK
|
| 195 |
-
if predictor and hasattr(predictor, 'set_image') and hasattr(predictor, 'predict'):
|
| 196 |
-
h, w = image.shape[:2]
|
| 197 |
-
predictor.set_image(image)
|
| 198 |
-
|
| 199 |
-
points = np.array([
|
| 200 |
-
[w//2, h//4],
|
| 201 |
-
[w//2, h//2],
|
| 202 |
-
[w//2, 3*h//4],
|
| 203 |
-
[w//3, h//2],
|
| 204 |
-
[2*w//3, h//2],
|
| 205 |
-
[w//2, h//6],
|
| 206 |
-
[w//4, 2*h//3],
|
| 207 |
-
[3*w//4, 2*h//3],
|
| 208 |
-
], dtype=np.float32)
|
| 209 |
-
|
| 210 |
-
labels = np.ones(len(points), dtype=np.int32)
|
| 211 |
-
|
| 212 |
-
with torch.no_grad():
|
| 213 |
-
masks, scores, _ = predictor.predict(
|
| 214 |
-
point_coords=points,
|
| 215 |
-
point_labels=labels,
|
| 216 |
-
multimask_output=True
|
| 217 |
-
)
|
| 218 |
-
|
| 219 |
-
if masks is None or len(masks) == 0:
|
| 220 |
-
logger.warning("SAM2 returned no masks")
|
| 221 |
-
else:
|
| 222 |
-
best_idx = np.argmax(scores) if (scores is not None and len(scores) > 0) else 0
|
| 223 |
-
best_mask = masks[best_idx]
|
| 224 |
-
mask = _process_mask(best_mask)
|
| 225 |
-
if _validate_mask_quality(mask, image.shape[:2]):
|
| 226 |
-
logger.debug("Original SAM2 mask accepted by validator")
|
| 227 |
-
return mask
|
| 228 |
-
|
| 229 |
-
if fallback_enabled:
|
| 230 |
-
logger.warning("Falling back to classical segmentation")
|
| 231 |
-
return _classical_segmentation_cascade(image)
|
| 232 |
-
else:
|
| 233 |
-
raise SegmentationError("SAM2 failed and fallback disabled")
|
| 234 |
-
|
| 235 |
-
except Exception as e:
|
| 236 |
-
logger.error(f"Unexpected segmentation error: {e}")
|
| 237 |
-
if fallback_enabled:
|
| 238 |
-
return _classical_segmentation_cascade(image)
|
| 239 |
-
else:
|
| 240 |
-
raise SegmentationError(f"Unexpected error: {e}")
|
| 241 |
-
|
| 242 |
-
# ============================================================================
|
| 243 |
-
# MASK REFINEMENT FUNCTIONS
|
| 244 |
-
# ============================================================================
|
| 245 |
-
|
| 246 |
-
def refine_mask_hq(image: np.ndarray, mask: np.ndarray, matanyone_processor: Any,
|
| 247 |
-
fallback_enabled: bool = True) -> np.ndarray:
|
| 248 |
-
"""Enhanced mask refinement with MatAnyone and robust fallbacks"""
|
| 249 |
-
if image is None or mask is None:
|
| 250 |
-
raise MaskRefinementError("Invalid input image or mask")
|
| 251 |
-
|
| 252 |
-
try:
|
| 253 |
-
mask = _process_mask(mask)
|
| 254 |
-
|
| 255 |
-
# 1) MatAnyOne (if present)
|
| 256 |
-
if matanyone_processor is not None:
|
| 257 |
-
try:
|
| 258 |
-
logger.debug("Attempting MatAnyone refinement")
|
| 259 |
-
refined_mask = _matanyone_refine(image, mask, matanyone_processor)
|
| 260 |
-
|
| 261 |
-
if refined_mask is not None and _validate_mask_quality(refined_mask, image.shape[:2]):
|
| 262 |
-
logger.debug("MatAnyone refinement successful")
|
| 263 |
-
return refined_mask
|
| 264 |
-
else:
|
| 265 |
-
logger.warning("MatAnyOne produced poor quality mask")
|
| 266 |
-
|
| 267 |
-
except Exception as e:
|
| 268 |
-
logger.warning(f"MatAnyOne refinement failed: {e}")
|
| 269 |
-
|
| 270 |
-
# 2) Advanced OpenCV refinement
|
| 271 |
-
try:
|
| 272 |
-
logger.debug("Using enhanced OpenCV refinement")
|
| 273 |
-
opencv_mask = enhance_mask_opencv_advanced(image, mask)
|
| 274 |
-
if _validate_mask_quality(opencv_mask, image.shape[:2]):
|
| 275 |
-
return opencv_mask
|
| 276 |
-
except Exception as e:
|
| 277 |
-
logger.warning(f"OpenCV advanced refinement failed: {e}")
|
| 278 |
-
|
| 279 |
-
# 3) GrabCut refinement (auto rect from saliency)
|
| 280 |
-
try:
|
| 281 |
-
logger.debug("Using GrabCut refinement fallback")
|
| 282 |
-
gc_mask = _refine_with_grabcut(image, mask)
|
| 283 |
-
if _validate_mask_quality(gc_mask, image.shape[:2]):
|
| 284 |
-
return gc_mask
|
| 285 |
-
except Exception as e:
|
| 286 |
-
logger.warning(f"GrabCut refinement failed: {e}")
|
| 287 |
-
|
| 288 |
-
# 4) Saliency flood-fill refinement
|
| 289 |
-
try:
|
| 290 |
-
logger.debug("Using saliency refinement fallback")
|
| 291 |
-
sal_mask = _refine_with_saliency(image, mask)
|
| 292 |
-
if _validate_mask_quality(sal_mask, image.shape[:2]):
|
| 293 |
-
return sal_mask
|
| 294 |
-
except Exception as e:
|
| 295 |
-
logger.warning(f"Saliency refinement failed: {e}")
|
| 296 |
-
|
| 297 |
-
if fallback_enabled:
|
| 298 |
-
logger.debug("Returning original mask after failed refinements")
|
| 299 |
-
return mask
|
| 300 |
-
else:
|
| 301 |
-
raise MaskRefinementError("All refinements failed")
|
| 302 |
-
|
| 303 |
-
except MaskRefinementError:
|
| 304 |
-
raise
|
| 305 |
-
except Exception as e:
|
| 306 |
-
logger.error(f"Unexpected mask refinement error: {e}")
|
| 307 |
-
if fallback_enabled:
|
| 308 |
-
return enhance_mask_opencv_advanced(image, mask)
|
| 309 |
-
else:
|
| 310 |
-
raise MaskRefinementError(f"Unexpected error: {e}")
|
| 311 |
-
|
| 312 |
-
def enhance_mask_opencv_advanced(image: np.ndarray, mask: np.ndarray) -> np.ndarray:
|
| 313 |
-
"""Advanced OpenCV-based mask enhancement with multiple techniques"""
|
| 314 |
-
try:
|
| 315 |
-
if len(mask.shape) == 3:
|
| 316 |
-
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 317 |
-
|
| 318 |
-
if mask.max() <= 1.0:
|
| 319 |
-
mask = (mask * 255).astype(np.uint8)
|
| 320 |
-
|
| 321 |
-
refined_mask = cv2.bilateralFilter(mask, 9, 75, 75)
|
| 322 |
-
refined_mask = _guided_filter_approx(image, refined_mask, radius=8, eps=0.2)
|
| 323 |
-
|
| 324 |
-
kernel_close = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
| 325 |
-
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel_close)
|
| 326 |
-
|
| 327 |
-
kernel_open = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
|
| 328 |
-
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_OPEN, kernel_open)
|
| 329 |
-
|
| 330 |
-
refined_mask = cv2.GaussianBlur(refined_mask, (3, 3), 0.8)
|
| 331 |
-
|
| 332 |
-
_, refined_mask = cv2.threshold(refined_mask, 127, 255, cv2.THRESH_BINARY)
|
| 333 |
-
|
| 334 |
-
return refined_mask
|
| 335 |
-
|
| 336 |
-
except Exception as e:
|
| 337 |
-
logger.warning(f"Enhanced OpenCV refinement failed: {e}")
|
| 338 |
-
return cv2.GaussianBlur(mask, (5, 5), 1.0)
|
| 339 |
-
|
| 340 |
-
# ============================================================================
|
| 341 |
-
# MATANYONE REFINEMENT (SAFE)
|
| 342 |
-
# ============================================================================
|
| 343 |
-
|
| 344 |
-
def _matanyone_refine(image: np.ndarray, mask: np.ndarray, matanyone_processor: Any) -> Optional[np.ndarray]:
|
| 345 |
-
"""Safe MatAnyOne refinement for a single frame with correct interface."""
|
| 346 |
-
try:
|
| 347 |
-
# Check for correct MatAnyOne interface
|
| 348 |
-
if not hasattr(matanyone_processor, 'step') or not hasattr(matanyone_processor, 'output_prob_to_mask'):
|
| 349 |
-
logger.warning("MatAnyOne processor missing required methods (step, output_prob_to_mask)")
|
| 350 |
-
return None
|
| 351 |
-
|
| 352 |
-
# Preprocess image: ensure float32, RGB, (C, H, W)
|
| 353 |
-
if isinstance(image, np.ndarray):
|
| 354 |
-
img = image.astype(np.float32)
|
| 355 |
-
if img.max() > 1.0:
|
| 356 |
-
img /= 255.0
|
| 357 |
-
if img.shape[2] == 3:
|
| 358 |
-
img = np.transpose(img, (2, 0, 1)) # (H, W, C) → (C, H, W)
|
| 359 |
-
img_tensor = torch.from_numpy(img)
|
| 360 |
-
else:
|
| 361 |
-
img_tensor = image # assume already tensor
|
| 362 |
-
|
| 363 |
-
# Preprocess mask: ensure float32, (H, W)
|
| 364 |
-
if isinstance(mask, np.ndarray):
|
| 365 |
-
mask_tensor = mask.astype(np.float32)
|
| 366 |
-
if mask_tensor.max() > 1.0:
|
| 367 |
-
mask_tensor /= 255.0
|
| 368 |
-
if mask_tensor.ndim > 2:
|
| 369 |
-
mask_tensor = mask_tensor.squeeze()
|
| 370 |
-
mask_tensor = torch.from_numpy(mask_tensor)
|
| 371 |
-
else:
|
| 372 |
-
mask_tensor = mask
|
| 373 |
-
|
| 374 |
-
# Move tensors to processor's device if available
|
| 375 |
-
device = getattr(matanyone_processor, 'device', 'cpu')
|
| 376 |
-
img_tensor = img_tensor.to(device)
|
| 377 |
-
mask_tensor = mask_tensor.to(device)
|
| 378 |
-
|
| 379 |
-
# Step: encode mask on this frame
|
| 380 |
-
objects = [1] # single object id
|
| 381 |
-
with torch.no_grad():
|
| 382 |
-
output_prob = matanyone_processor.step(img_tensor, mask_tensor, objects=objects)
|
| 383 |
-
# MatAnyOne returns output_prob as tensor
|
| 384 |
-
|
| 385 |
-
refined_mask_tensor = matanyone_processor.output_prob_to_mask(output_prob)
|
| 386 |
-
|
| 387 |
-
# Convert to numpy and to uint8
|
| 388 |
-
refined_mask = refined_mask_tensor.squeeze().detach().cpu().numpy()
|
| 389 |
-
if refined_mask.max() <= 1.0:
|
| 390 |
-
refined_mask = (refined_mask * 255).astype(np.uint8)
|
| 391 |
-
else:
|
| 392 |
-
refined_mask = np.clip(refined_mask, 0, 255).astype(np.uint8)
|
| 393 |
-
|
| 394 |
-
logger.debug("MatAnyOne refinement successful")
|
| 395 |
-
return refined_mask
|
| 396 |
-
|
| 397 |
-
except Exception as e:
|
| 398 |
-
logger.warning(f"MatAnyOne refinement error: {e}")
|
| 399 |
-
return None
|
| 400 |
-
|
| 401 |
-
# ============================================================================
|
| 402 |
-
# BACKGROUND REPLACEMENT FUNCTIONS
|
| 403 |
-
# ============================================================================
|
| 404 |
-
|
| 405 |
-
def replace_background_hq(frame: np.ndarray, mask: np.ndarray, background: np.ndarray,
|
| 406 |
-
fallback_enabled: bool = True) -> np.ndarray:
|
| 407 |
-
"""Enhanced background replacement with comprehensive error handling"""
|
| 408 |
-
if frame is None or mask is None or background is None:
|
| 409 |
-
raise BackgroundReplacementError("Invalid input frame, mask, or background")
|
| 410 |
-
|
| 411 |
-
try:
|
| 412 |
-
background = cv2.resize(background, (frame.shape[1], frame.shape[0]),
|
| 413 |
-
interpolation=cv2.INTER_LANCZOS4)
|
| 414 |
-
|
| 415 |
-
if len(mask.shape) == 3:
|
| 416 |
-
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 417 |
-
|
| 418 |
-
if mask.dtype != np.uint8:
|
| 419 |
-
mask = mask.astype(np.uint8)
|
| 420 |
-
|
| 421 |
-
if mask.max() <= 1.0:
|
| 422 |
-
logger.debug("Converting normalized mask to 0-255 range")
|
| 423 |
-
mask = (mask * 255).astype(np.uint8)
|
| 424 |
-
|
| 425 |
-
try:
|
| 426 |
-
result = _advanced_compositing(frame, mask, background)
|
| 427 |
-
logger.debug("Advanced compositing successful")
|
| 428 |
-
return result
|
| 429 |
-
|
| 430 |
-
except Exception as e:
|
| 431 |
-
logger.warning(f"Advanced compositing failed: {e}")
|
| 432 |
-
if fallback_enabled:
|
| 433 |
-
return _simple_compositing(frame, mask, background)
|
| 434 |
-
else:
|
| 435 |
-
raise BackgroundReplacementError(f"Advanced compositing failed: {e}")
|
| 436 |
-
|
| 437 |
-
except BackgroundReplacementError:
|
| 438 |
-
raise
|
| 439 |
-
except Exception as e:
|
| 440 |
-
logger.error(f"Unexpected background replacement error: {e}")
|
| 441 |
-
if fallback_enabled:
|
| 442 |
-
return _simple_compositing(frame, mask, background)
|
| 443 |
-
else:
|
| 444 |
-
raise BackgroundReplacementError(f"Unexpected error: {e}")
|
| 445 |
-
|
| 446 |
-
def create_professional_background(bg_config: Dict[str, Any] | str, width: int, height: int) -> np.ndarray:
|
| 447 |
"""
|
| 448 |
-
|
| 449 |
-
|
| 450 |
"""
|
| 451 |
-
|
| 452 |
-
choice = "minimalist"
|
| 453 |
-
custom_path = None
|
| 454 |
-
|
| 455 |
-
if isinstance(bg_config, dict):
|
| 456 |
-
choice = bg_config.get("background_choice", bg_config.get("name", "minimalist"))
|
| 457 |
-
custom_path = bg_config.get("custom_path")
|
| 458 |
-
|
| 459 |
-
# Custom background path (letterboxed + BGR out)
|
| 460 |
-
if custom_path and os.path.exists(custom_path):
|
| 461 |
-
img_bgr = cv2.imread(custom_path, cv2.IMREAD_COLOR)
|
| 462 |
-
if img_bgr is not None:
|
| 463 |
-
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
|
| 464 |
-
fitted_rgb = _fit_image_letterbox(img_rgb, width, height, fill=(32, 32, 32))
|
| 465 |
-
fitted_bgr = cv2.cvtColor(fitted_rgb, cv2.COLOR_RGB2BGR)
|
| 466 |
-
return fitted_bgr
|
| 467 |
-
else:
|
| 468 |
-
logger.warning(f"Failed to read custom background at {custom_path}. Falling back to style.")
|
| 469 |
-
|
| 470 |
-
# Direct dict colors/type form support
|
| 471 |
-
if "type" in bg_config and "colors" in bg_config:
|
| 472 |
-
if bg_config["type"] == "color":
|
| 473 |
-
background = _create_solid_background(bg_config, width, height)
|
| 474 |
-
else:
|
| 475 |
-
background = _create_gradient_background_enhanced(bg_config, width, height)
|
| 476 |
-
background = _apply_background_adjustments(background, bg_config)
|
| 477 |
-
return background
|
| 478 |
-
|
| 479 |
-
elif isinstance(bg_config, str):
|
| 480 |
-
choice = bg_config
|
| 481 |
-
|
| 482 |
-
choice = (choice or "minimalist").lower()
|
| 483 |
-
if choice not in PROFESSIONAL_BACKGROUNDS:
|
| 484 |
-
choice = "minimalist"
|
| 485 |
-
|
| 486 |
-
cfg = PROFESSIONAL_BACKGROUNDS[choice]
|
| 487 |
-
|
| 488 |
-
if cfg.get("type") == "color":
|
| 489 |
-
background = _create_solid_background(cfg, width, height)
|
| 490 |
-
else:
|
| 491 |
-
background = _create_gradient_background_enhanced(cfg, width, height)
|
| 492 |
-
|
| 493 |
-
background = _apply_background_adjustments(background, cfg)
|
| 494 |
-
return background
|
| 495 |
-
|
| 496 |
-
except Exception as e:
|
| 497 |
-
logger.error(f"Background creation error: {e}")
|
| 498 |
-
return np.full((height, width, 3), (128, 128, 128), dtype=np.uint8)
|
| 499 |
-
|
| 500 |
-
# ============================================================================
|
| 501 |
-
# VALIDATION FUNCTION
|
| 502 |
-
# ============================================================================
|
| 503 |
-
|
| 504 |
-
def validate_video_file(video_path: str) -> Tuple[bool, str]:
|
| 505 |
-
"""Enhanced video file validation with detailed checks"""
|
| 506 |
-
if not video_path or not os.path.exists(video_path):
|
| 507 |
return False, "Video file not found"
|
| 508 |
|
| 509 |
try:
|
| 510 |
-
|
| 511 |
-
if
|
| 512 |
-
return False, "
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
return False, "Video file too large (>2GB)"
|
| 516 |
|
| 517 |
cap = cv2.VideoCapture(video_path)
|
| 518 |
if not cap.isOpened():
|
| 519 |
-
return False, "
|
| 520 |
-
|
| 521 |
-
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 522 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 523 |
-
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 524 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 525 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 526 |
cap.release()
|
| 527 |
|
| 528 |
-
if
|
| 529 |
-
return False, "
|
| 530 |
-
|
| 531 |
if fps <= 0 or fps > 120:
|
| 532 |
-
return False, f"
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
if
|
| 538 |
-
return False,
|
| 539 |
-
|
| 540 |
-
duration = frame_count / fps
|
| 541 |
-
if duration > 300:
|
| 542 |
-
return False, f"Video too long: {duration:.1f}s (max 300s)"
|
| 543 |
-
|
| 544 |
-
return True, f"Valid video: {width}x{height}, {fps:.1f}fps, {duration:.1f}s"
|
| 545 |
-
|
| 546 |
-
except Exception as e:
|
| 547 |
-
return False, f"Error validating video: {str(e)}"
|
| 548 |
-
|
| 549 |
-
# ============================================================================
|
| 550 |
-
# HELPER FUNCTIONS - SEGMENTATION
|
| 551 |
-
# ============================================================================
|
| 552 |
-
|
| 553 |
-
def _segment_with_intelligent_prompts(image: np.ndarray, predictor: Any, fallback_enabled: bool = True) -> np.ndarray:
|
| 554 |
-
"""Intelligent automatic prompt generation for segmentation with safe predictor access"""
|
| 555 |
-
try:
|
| 556 |
-
# Double-check predictor validity
|
| 557 |
-
if predictor is None or not hasattr(predictor, 'predict'):
|
| 558 |
-
if fallback_enabled:
|
| 559 |
-
return _classical_segmentation_cascade(image)
|
| 560 |
-
else:
|
| 561 |
-
raise SegmentationError("Invalid predictor in intelligent prompts")
|
| 562 |
-
|
| 563 |
-
h, w = image.shape[:2]
|
| 564 |
-
pos_points, neg_points = _generate_smart_prompts(image)
|
| 565 |
-
|
| 566 |
-
if len(pos_points) == 0:
|
| 567 |
-
pos_points = np.array([[w//2, h//2]], dtype=np.float32)
|
| 568 |
-
|
| 569 |
-
points = np.vstack([pos_points, neg_points])
|
| 570 |
-
labels = np.hstack([
|
| 571 |
-
np.ones(len(pos_points), dtype=np.int32),
|
| 572 |
-
np.zeros(len(neg_points), dtype=np.int32)
|
| 573 |
-
])
|
| 574 |
-
|
| 575 |
-
logger.debug(f"Using {len(pos_points)} positive, {len(neg_points)} negative points")
|
| 576 |
-
|
| 577 |
-
with torch.no_grad():
|
| 578 |
-
masks, scores, _ = predictor.predict(
|
| 579 |
-
point_coords=points,
|
| 580 |
-
point_labels=labels,
|
| 581 |
-
multimask_output=True
|
| 582 |
-
)
|
| 583 |
-
|
| 584 |
-
if masks is None or len(masks) == 0:
|
| 585 |
-
raise SegmentationError("No masks generated")
|
| 586 |
-
|
| 587 |
-
if scores is not None and len(scores) > 0:
|
| 588 |
-
best_idx = np.argmax(scores)
|
| 589 |
-
best_mask = masks[best_idx]
|
| 590 |
-
logger.debug(f"Selected mask {best_idx} with score {scores[best_idx]:.3f}")
|
| 591 |
-
else:
|
| 592 |
-
best_mask = masks[0]
|
| 593 |
-
|
| 594 |
-
return _process_mask(best_mask)
|
| 595 |
-
|
| 596 |
-
except Exception as e:
|
| 597 |
-
logger.error(f"Intelligent prompting failed: {e}")
|
| 598 |
-
if fallback_enabled:
|
| 599 |
-
return _classical_segmentation_cascade(image)
|
| 600 |
-
else:
|
| 601 |
-
raise
|
| 602 |
-
|
| 603 |
-
def _segment_with_basic_prompts(image: np.ndarray, predictor: Any, fallback_enabled: bool = True) -> np.ndarray:
|
| 604 |
-
"""Basic prompting method for segmentation with safe predictor access"""
|
| 605 |
-
try:
|
| 606 |
-
# Double-check predictor validity
|
| 607 |
-
if predictor is None or not hasattr(predictor, 'predict'):
|
| 608 |
-
if fallback_enabled:
|
| 609 |
-
return _classical_segmentation_cascade(image)
|
| 610 |
-
else:
|
| 611 |
-
raise SegmentationError("Invalid predictor in basic prompts")
|
| 612 |
-
|
| 613 |
-
h, w = image.shape[:2]
|
| 614 |
-
|
| 615 |
-
positive_points = np.array([
|
| 616 |
-
[w//2, h//3],
|
| 617 |
-
[w//2, h//2],
|
| 618 |
-
[w//2, 2*h//3],
|
| 619 |
-
], dtype=np.float32)
|
| 620 |
-
|
| 621 |
-
negative_points = np.array([
|
| 622 |
-
[w//10, h//10],
|
| 623 |
-
[9*w//10, h//10],
|
| 624 |
-
[w//10, 9*h//10],
|
| 625 |
-
[9*w//10, 9*h//10],
|
| 626 |
-
], dtype=np.float32)
|
| 627 |
-
|
| 628 |
-
points = np.vstack([positive_points, negative_points])
|
| 629 |
-
labels = np.array([1, 1, 1, 0, 0, 0, 0], dtype=np.int32)
|
| 630 |
-
|
| 631 |
-
with torch.no_grad():
|
| 632 |
-
masks, scores, _ = predictor.predict(
|
| 633 |
-
point_coords=points,
|
| 634 |
-
point_labels=labels,
|
| 635 |
-
multimask_output=True
|
| 636 |
-
)
|
| 637 |
-
|
| 638 |
-
if masks is None or len(masks) == 0:
|
| 639 |
-
raise SegmentationError("No masks generated")
|
| 640 |
-
|
| 641 |
-
best_idx = np.argmax(scores) if scores is not None and len(scores) > 0 else 0
|
| 642 |
-
best_mask = masks[best_idx]
|
| 643 |
-
|
| 644 |
-
return _process_mask(best_mask)
|
| 645 |
-
|
| 646 |
-
except Exception as e:
|
| 647 |
-
logger.error(f"Basic prompting failed: {e}")
|
| 648 |
-
if fallback_enabled:
|
| 649 |
-
return _classical_segmentation_cascade(image)
|
| 650 |
-
else:
|
| 651 |
-
raise
|
| 652 |
-
|
| 653 |
-
def _generate_smart_prompts(image: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
| 654 |
-
"""Generate optimal positive/negative points automatically"""
|
| 655 |
-
try:
|
| 656 |
-
h, w = image.shape[:2]
|
| 657 |
-
|
| 658 |
-
saliency = _compute_saliency(image)
|
| 659 |
-
positive_points = []
|
| 660 |
-
if saliency is not None:
|
| 661 |
-
saliency_thresh = (saliency > (SALIENCY_THRESH - 0.1)).astype(np.uint8) * 255
|
| 662 |
-
contours, _ = cv2.findContours(saliency_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 663 |
-
|
| 664 |
-
if contours:
|
| 665 |
-
for contour in sorted(contours, key=cv2.contourArea, reverse=True)[:3]:
|
| 666 |
-
M = cv2.moments(contour)
|
| 667 |
-
if M["m00"] != 0:
|
| 668 |
-
cx = int(M["m10"] / M["m00"])
|
| 669 |
-
cy = int(M["m01"] / M["m00"])
|
| 670 |
-
if 0 < cx < w and 0 < cy < h:
|
| 671 |
-
positive_points.append([cx, cy])
|
| 672 |
-
|
| 673 |
-
if not positive_points:
|
| 674 |
-
positive_points = [
|
| 675 |
-
[w//2, h//3],
|
| 676 |
-
[w//2, h//2],
|
| 677 |
-
[w//2, 2*h//3],
|
| 678 |
-
]
|
| 679 |
-
|
| 680 |
-
negative_points = [
|
| 681 |
-
[10, 10],
|
| 682 |
-
[w-10, 10],
|
| 683 |
-
[10, h-10],
|
| 684 |
-
[w-10, h-10],
|
| 685 |
-
[w//2, 5],
|
| 686 |
-
[w//2, h-5],
|
| 687 |
-
]
|
| 688 |
-
|
| 689 |
-
return np.array(positive_points, dtype=np.float32), np.array(negative_points, dtype=np.float32)
|
| 690 |
-
|
| 691 |
-
except Exception as e:
|
| 692 |
-
logger.warning(f"Smart prompt generation failed: {e}")
|
| 693 |
-
h, w = image.shape[:2]
|
| 694 |
-
positive_points = np.array([[w//2, h//2]], dtype=np.float32)
|
| 695 |
-
negative_points = np.array([[10, 10], [w-10, 10]], dtype=np.float32)
|
| 696 |
-
return positive_points, negative_points
|
| 697 |
-
|
| 698 |
-
# ============================================================================
|
| 699 |
-
# CLASSICAL SEGMENTATION CASCADE
|
| 700 |
-
# ============================================================================
|
| 701 |
-
|
| 702 |
-
def _classical_segmentation_cascade(image: np.ndarray) -> np.ndarray:
|
| 703 |
-
"""
|
| 704 |
-
Robust non-AI cascade:
|
| 705 |
-
1) Background subtraction via edge-median
|
| 706 |
-
2) Saliency flood-fill
|
| 707 |
-
3) GrabCut from auto-rect
|
| 708 |
-
4) Geometric ellipse (final fallback)
|
| 709 |
-
"""
|
| 710 |
-
# 1) Background subtraction
|
| 711 |
-
try:
|
| 712 |
-
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 713 |
-
|
| 714 |
-
edge_pixels = np.concatenate([
|
| 715 |
-
gray[0, :], gray[-1, :], gray[:, 0], gray[:, -1]
|
| 716 |
-
])
|
| 717 |
-
bg_color = np.median(edge_pixels)
|
| 718 |
-
|
| 719 |
-
diff = np.abs(gray.astype(float) - bg_color)
|
| 720 |
-
mask = (diff > 30).astype(np.uint8) * 255
|
| 721 |
-
|
| 722 |
-
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7)))
|
| 723 |
-
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)))
|
| 724 |
-
|
| 725 |
-
if _validate_mask_quality(mask, image.shape[:2]):
|
| 726 |
-
logger.info("Background subtraction fallback successful")
|
| 727 |
-
return mask
|
| 728 |
-
|
| 729 |
-
except Exception as e:
|
| 730 |
-
logger.debug(f"Background subtraction fallback failed: {e}")
|
| 731 |
-
|
| 732 |
-
# 2) Saliency flood-fill refinement
|
| 733 |
-
try:
|
| 734 |
-
sal_ref = _refine_with_saliency(image, mask if 'mask' in locals() else np.zeros(image.shape[:2], np.uint8))
|
| 735 |
-
if _validate_mask_quality(sal_ref, image.shape[:2]):
|
| 736 |
-
return sal_ref
|
| 737 |
-
except Exception as e:
|
| 738 |
-
logger.debug(f"Saliency cascade failed: {e}")
|
| 739 |
-
|
| 740 |
-
# 3) GrabCut refinement
|
| 741 |
-
try:
|
| 742 |
-
gc_mask = _refine_with_grabcut(image, mask if 'mask' in locals() else np.zeros(image.shape[:2], np.uint8))
|
| 743 |
-
if _validate_mask_quality(gc_mask, image.shape[:2]):
|
| 744 |
-
return gc_mask
|
| 745 |
-
except Exception as e:
|
| 746 |
-
logger.debug(f"GrabCut cascade failed: {e}")
|
| 747 |
-
|
| 748 |
-
# 4) Geometric final fallback
|
| 749 |
-
logger.info("Using geometric fallback mask")
|
| 750 |
-
return _geometric_person_mask(image)
|
| 751 |
-
|
| 752 |
-
# ============================================================================
|
| 753 |
-
# SALIENCY / GRABCUT HELPERS
|
| 754 |
-
# ============================================================================
|
| 755 |
-
|
| 756 |
-
def _compute_saliency(image: np.ndarray) -> Optional[np.ndarray]:
|
| 757 |
-
try:
|
| 758 |
-
if hasattr(cv2, "saliency"):
|
| 759 |
-
sal = cv2.saliency.StaticSaliencySpectralResidual_create()
|
| 760 |
-
ok, smap = sal.computeSaliency(image)
|
| 761 |
-
if ok:
|
| 762 |
-
smap = (smap - smap.min()) / max(1e-6, (smap.max() - smap.min()))
|
| 763 |
-
return smap
|
| 764 |
-
except Exception:
|
| 765 |
-
pass
|
| 766 |
-
# Fallback spectral-ish hint using DCT trick
|
| 767 |
-
try:
|
| 768 |
-
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY).astype(np.float32) / 255.0
|
| 769 |
-
log = np.log(gray + 1e-6)
|
| 770 |
-
dct = cv2.dct(log)
|
| 771 |
-
dct[:5, :5] = 0
|
| 772 |
-
recon = cv2.idct(dct)
|
| 773 |
-
recon = (recon - recon.min()) / max(1e-6, (recon.max() - recon.min()))
|
| 774 |
-
return recon
|
| 775 |
-
except Exception:
|
| 776 |
-
return None
|
| 777 |
-
|
| 778 |
-
def _auto_person_rect(image: np.ndarray) -> Optional[Tuple[int, int, int, int]]:
|
| 779 |
-
sal = _compute_saliency(image)
|
| 780 |
-
if sal is None:
|
| 781 |
-
return None
|
| 782 |
-
th = (sal > SALIENCY_THRESH).astype(np.uint8) * 255
|
| 783 |
-
contours, _ = cv2.findContours(th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 784 |
-
if not contours:
|
| 785 |
-
return None
|
| 786 |
-
c = max(contours, key=cv2.contourArea)
|
| 787 |
-
x, y, w, h = cv2.boundingRect(c)
|
| 788 |
-
# Inflate
|
| 789 |
-
pad_x, pad_y = int(0.05*w), int(0.05*h)
|
| 790 |
-
H, W = image.shape[:2]
|
| 791 |
-
x = max(0, x - pad_x); y = max(0, y - pad_y)
|
| 792 |
-
w = min(W - x, w + 2*pad_x); h = min(H - y, h + 2*pad_y)
|
| 793 |
-
return (x, y, w, h)
|
| 794 |
-
|
| 795 |
-
def _refine_with_grabcut(image: np.ndarray, seed_mask: np.ndarray) -> np.ndarray:
|
| 796 |
-
h, w = image.shape[:2]
|
| 797 |
-
gc_mask = np.full((h, w), cv2.GC_PR_BGD, dtype=np.uint8)
|
| 798 |
-
sure_fg = (seed_mask > 200)
|
| 799 |
-
gc_mask[sure_fg] = cv2.GC_FGD
|
| 800 |
-
|
| 801 |
-
rect = _auto_person_rect(image)
|
| 802 |
-
if rect is not None:
|
| 803 |
-
x, y, rw, rh = rect
|
| 804 |
-
else:
|
| 805 |
-
rw, rh = int(w * 0.5), int(h * 0.7)
|
| 806 |
-
x, y = (w - rw)//2, int(h*0.15)
|
| 807 |
-
|
| 808 |
-
bgdModel = np.zeros((1, 65), np.float64)
|
| 809 |
-
fgdModel = np.zeros((1, 65), np.float64)
|
| 810 |
-
|
| 811 |
-
cv2.grabCut(image, gc_mask, (x, y, rw, rh), bgdModel, fgdModel, GRABCUT_ITERS, cv2.GC_INIT_WITH_MASK)
|
| 812 |
-
|
| 813 |
-
mask_bin = np.where((gc_mask == cv2.GC_FGD) | (gc_mask == cv2.GC_PR_FGD), 255, 0).astype(np.uint8)
|
| 814 |
-
mask_bin = cv2.morphologyEx(mask_bin, cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
|
| 815 |
-
return mask_bin
|
| 816 |
-
|
| 817 |
-
def _refine_with_saliency(image: np.ndarray, seed_mask: np.ndarray) -> np.ndarray:
|
| 818 |
-
sal = _compute_saliency(image)
|
| 819 |
-
if sal is None:
|
| 820 |
-
return seed_mask
|
| 821 |
-
th = (sal > SALIENCY_THRESH).astype(np.uint8) * 255
|
| 822 |
-
|
| 823 |
-
# Anchor from seed center mass or center fallback
|
| 824 |
-
ys, xs = np.where(seed_mask > 127)
|
| 825 |
-
if len(ys) > 0:
|
| 826 |
-
cx, cy = int(np.mean(xs)), int(np.mean(ys))
|
| 827 |
-
else:
|
| 828 |
-
h, w = image.shape[:2]
|
| 829 |
-
cx, cy = w//2, h//2
|
| 830 |
-
|
| 831 |
-
ff = th.copy()
|
| 832 |
-
h, w = th.shape
|
| 833 |
-
mask = np.zeros((h+2, w+2), np.uint8)
|
| 834 |
-
cv2.floodFill(ff, mask, (cx, cy), 255, loDiff=5, upDiff=5, flags=4)
|
| 835 |
-
ff = cv2.morphologyEx(ff, cv2.MORPH_CLOSE, np.ones((5,5), np.uint8))
|
| 836 |
-
return ff
|
| 837 |
-
|
| 838 |
-
# ============================================================================
|
| 839 |
-
# HELPER FUNCTIONS - REFINEMENT
|
| 840 |
-
# ============================================================================
|
| 841 |
-
|
| 842 |
-
def _auto_refine_mask_iteratively(image: np.ndarray, initial_mask: np.ndarray,
|
| 843 |
-
predictor: Any, max_iterations: int = 2) -> np.ndarray:
|
| 844 |
-
"""Automatically refine mask based on quality assessment with safe predictor access"""
|
| 845 |
-
try:
|
| 846 |
-
if predictor is None or not hasattr(predictor, 'predict'):
|
| 847 |
-
logger.warning("Predictor invalid for iterative refinement, returning initial mask")
|
| 848 |
-
return initial_mask
|
| 849 |
-
|
| 850 |
-
current_mask = initial_mask.copy()
|
| 851 |
-
|
| 852 |
-
for iteration in range(max_iterations):
|
| 853 |
-
quality_score = _assess_mask_quality(current_mask, image)
|
| 854 |
-
logger.debug(f"Iteration {iteration}: quality score = {quality_score:.3f}")
|
| 855 |
-
|
| 856 |
-
if quality_score > 0.85:
|
| 857 |
-
logger.debug(f"Quality sufficient after {iteration} iterations")
|
| 858 |
-
break
|
| 859 |
-
|
| 860 |
-
problem_areas = _find_mask_errors(current_mask, image)
|
| 861 |
-
|
| 862 |
-
if np.any(problem_areas):
|
| 863 |
-
corrective_points, corrective_labels = _generate_corrective_prompts(
|
| 864 |
-
image, current_mask, problem_areas
|
| 865 |
-
)
|
| 866 |
-
|
| 867 |
-
if len(corrective_points) > 0:
|
| 868 |
-
try:
|
| 869 |
-
with torch.no_grad():
|
| 870 |
-
masks, scores, _ = predictor.predict(
|
| 871 |
-
point_coords=corrective_points,
|
| 872 |
-
point_labels=corrective_labels,
|
| 873 |
-
mask_input=current_mask[None, :, :],
|
| 874 |
-
multimask_output=False
|
| 875 |
-
)
|
| 876 |
-
|
| 877 |
-
if masks is not None and len(masks) > 0:
|
| 878 |
-
refined_mask = _process_mask(masks[0])
|
| 879 |
-
|
| 880 |
-
if _assess_mask_quality(refined_mask, image) > quality_score:
|
| 881 |
-
current_mask = refined_mask
|
| 882 |
-
logger.debug(f"Improved mask in iteration {iteration}")
|
| 883 |
-
else:
|
| 884 |
-
logger.debug(f"Refinement didn't improve quality in iteration {iteration}")
|
| 885 |
-
break
|
| 886 |
-
|
| 887 |
-
except Exception as e:
|
| 888 |
-
logger.debug(f"Refinement iteration {iteration} failed: {e}")
|
| 889 |
-
break
|
| 890 |
-
else:
|
| 891 |
-
logger.debug("No problem areas detected")
|
| 892 |
-
break
|
| 893 |
-
|
| 894 |
-
return current_mask
|
| 895 |
-
|
| 896 |
-
except Exception as e:
|
| 897 |
-
logger.warning(f"Iterative refinement failed: {e}")
|
| 898 |
-
return initial_mask
|
| 899 |
-
|
| 900 |
-
def _assess_mask_quality(mask: np.ndarray, image: np.ndarray) -> float:
|
| 901 |
-
"""Assess mask quality automatically"""
|
| 902 |
-
try:
|
| 903 |
-
h, w = image.shape[:2]
|
| 904 |
-
scores = []
|
| 905 |
-
|
| 906 |
-
mask_area = np.sum(mask > 127)
|
| 907 |
-
total_area = h * w
|
| 908 |
-
area_ratio = mask_area / total_area
|
| 909 |
-
|
| 910 |
-
if 0.05 <= area_ratio <= 0.8:
|
| 911 |
-
area_score = 1.0
|
| 912 |
-
elif area_ratio < 0.05:
|
| 913 |
-
area_score = area_ratio / 0.05
|
| 914 |
-
else:
|
| 915 |
-
area_score = max(0, 1.0 - (area_ratio - 0.8) / 0.2)
|
| 916 |
-
scores.append(area_score)
|
| 917 |
-
|
| 918 |
-
mask_binary = mask > 127
|
| 919 |
-
if np.any(mask_binary):
|
| 920 |
-
mask_center_y, mask_center_x = np.where(mask_binary)
|
| 921 |
-
center_y = np.mean(mask_center_y) / h
|
| 922 |
-
center_x = np.mean(mask_center_x) / w
|
| 923 |
-
|
| 924 |
-
center_score = 1.0 - min(abs(center_x - 0.5), abs(center_y - 0.5))
|
| 925 |
-
scores.append(center_score)
|
| 926 |
-
else:
|
| 927 |
-
scores.append(0.0)
|
| 928 |
-
|
| 929 |
-
edges = cv2.Canny(mask, 50, 150)
|
| 930 |
-
edge_density = np.sum(edges > 0) / total_area
|
| 931 |
-
smoothness_score = max(0, 1.0 - edge_density * 10)
|
| 932 |
-
scores.append(smoothness_score)
|
| 933 |
-
|
| 934 |
-
num_labels, _ = cv2.connectedComponents(mask)
|
| 935 |
-
connectivity_score = max(0, 1.0 - (num_labels - 2) * 0.2)
|
| 936 |
-
scores.append(connectivity_score)
|
| 937 |
-
|
| 938 |
-
weights = [0.3, 0.2, 0.3, 0.2]
|
| 939 |
-
overall_score = np.average(scores, weights=weights)
|
| 940 |
-
|
| 941 |
-
return overall_score
|
| 942 |
-
|
| 943 |
-
except Exception as e:
|
| 944 |
-
logger.warning(f"Quality assessment failed: {e}")
|
| 945 |
-
return 0.5
|
| 946 |
-
|
| 947 |
-
def _find_mask_errors(mask: np.ndarray, image: np.ndarray) -> np.ndarray:
|
| 948 |
-
"""Identify problematic areas in mask"""
|
| 949 |
-
try:
|
| 950 |
-
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 951 |
-
edges = cv2.Canny(gray, 50, 150)
|
| 952 |
-
mask_edges = cv2.Canny(mask, 50, 150)
|
| 953 |
-
edge_discrepancy = cv2.bitwise_xor(edges, mask_edges)
|
| 954 |
-
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
| 955 |
-
error_regions = cv2.dilate(edge_discrepancy, kernel, iterations=1)
|
| 956 |
-
return error_regions > 0
|
| 957 |
-
except Exception as e:
|
| 958 |
-
logger.warning(f"Error detection failed: {e}")
|
| 959 |
-
return np.zeros_like(mask, dtype=bool)
|
| 960 |
-
|
| 961 |
-
def _generate_corrective_prompts(image: np.ndarray, mask: np.ndarray,
|
| 962 |
-
problem_areas: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
| 963 |
-
"""Generate corrective prompts based on problem areas"""
|
| 964 |
-
try:
|
| 965 |
-
contours, _ = cv2.findContours(problem_areas.astype(np.uint8),
|
| 966 |
-
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 967 |
-
|
| 968 |
-
corrective_points = []
|
| 969 |
-
corrective_labels = []
|
| 970 |
-
|
| 971 |
-
for contour in contours:
|
| 972 |
-
if cv2.contourArea(contour) > 100:
|
| 973 |
-
M = cv2.moments(contour)
|
| 974 |
-
if M["m00"] != 0:
|
| 975 |
-
cx = int(M["m10"] / M["m00"])
|
| 976 |
-
cy = int(M["m01"] / M["m00"])
|
| 977 |
-
|
| 978 |
-
current_mask_value = mask[cy, cx]
|
| 979 |
-
|
| 980 |
-
if current_mask_value < 127:
|
| 981 |
-
corrective_points.append([cx, cy])
|
| 982 |
-
corrective_labels.append(1)
|
| 983 |
-
else:
|
| 984 |
-
corrective_points.append([cx, cy])
|
| 985 |
-
corrective_labels.append(0)
|
| 986 |
-
|
| 987 |
-
return (np.array(corrective_points, dtype=np.float32) if corrective_points else np.array([]).reshape(0, 2),
|
| 988 |
-
np.array(corrective_labels, dtype=np.int32) if corrective_labels else np.array([], dtype=np.int32))
|
| 989 |
-
|
| 990 |
-
except Exception as e:
|
| 991 |
-
logger.warning(f"Corrective prompt generation failed: {e}")
|
| 992 |
-
return np.array([]).reshape(0, 2), np.array([], dtype=np.int32)
|
| 993 |
-
|
| 994 |
-
# ============================================================================
|
| 995 |
-
# HELPER FUNCTIONS - PROCESSING
|
| 996 |
-
# ============================================================================
|
| 997 |
-
|
| 998 |
-
def _process_mask(mask: np.ndarray) -> np.ndarray:
|
| 999 |
-
"""Process raw mask to ensure correct format and range"""
|
| 1000 |
-
try:
|
| 1001 |
-
if len(mask.shape) > 2:
|
| 1002 |
-
mask = mask.squeeze()
|
| 1003 |
-
|
| 1004 |
-
if len(mask.shape) > 2:
|
| 1005 |
-
mask = mask[:, :, 0] if mask.shape[2] > 0 else mask.sum(axis=2)
|
| 1006 |
-
|
| 1007 |
-
if mask.dtype == bool:
|
| 1008 |
-
mask = mask.astype(np.uint8) * 255
|
| 1009 |
-
elif mask.dtype == np.float32 or mask.dtype == np.float64:
|
| 1010 |
-
if mask.max() <= 1.0:
|
| 1011 |
-
mask = (mask * 255).astype(np.uint8)
|
| 1012 |
-
else:
|
| 1013 |
-
mask = np.clip(mask, 0, 255).astype(np.uint8)
|
| 1014 |
-
else:
|
| 1015 |
-
mask = mask.astype(np.uint8)
|
| 1016 |
-
|
| 1017 |
-
kernel = np.ones((3, 3), np.uint8)
|
| 1018 |
-
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
|
| 1019 |
-
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
|
| 1020 |
-
|
| 1021 |
-
_, mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
|
| 1022 |
-
|
| 1023 |
-
return mask
|
| 1024 |
-
|
| 1025 |
-
except Exception as e:
|
| 1026 |
-
logger.error(f"Mask processing failed: {e}")
|
| 1027 |
-
h, w = mask.shape[:2] if (mask is not None and hasattr(mask, 'shape') and len(mask.shape) >= 2) else (256, 256)
|
| 1028 |
-
fallback = np.zeros((h, w), dtype=np.uint8)
|
| 1029 |
-
fallback[h//4:3*h//4, w//4:3*w//4] = 255
|
| 1030 |
-
return fallback
|
| 1031 |
-
|
| 1032 |
-
def _validate_mask_quality(mask: np.ndarray, image_shape: Tuple[int, int]) -> bool:
|
| 1033 |
-
"""Validate that the mask meets quality criteria (soft reject policy)"""
|
| 1034 |
-
try:
|
| 1035 |
-
h, w = image_shape
|
| 1036 |
-
mask_area = np.sum(mask > 127)
|
| 1037 |
-
total_area = h * w
|
| 1038 |
-
|
| 1039 |
-
area_ratio = mask_area / total_area
|
| 1040 |
-
if area_ratio < MIN_AREA_RATIO or area_ratio > MAX_AREA_RATIO:
|
| 1041 |
-
logger.warning(f"Suspicious mask area ratio: {area_ratio:.3f}")
|
| 1042 |
-
return False
|
| 1043 |
-
|
| 1044 |
-
mask_binary = mask > 127
|
| 1045 |
-
mask_center_y, mask_center_x = np.where(mask_binary)
|
| 1046 |
-
|
| 1047 |
-
if len(mask_center_y) == 0:
|
| 1048 |
-
logger.warning("Empty mask")
|
| 1049 |
-
return False
|
| 1050 |
-
|
| 1051 |
-
center_y = np.mean(mask_center_y)
|
| 1052 |
-
# Advisory only (we no longer hard-reject based on center)
|
| 1053 |
-
if center_y < h * 0.08 or center_y > h * 0.98:
|
| 1054 |
-
logger.warning(f"Mask center unusual (advisory): y={center_y/h:.2f}")
|
| 1055 |
-
|
| 1056 |
-
return True
|
| 1057 |
-
|
| 1058 |
-
except Exception as e:
|
| 1059 |
-
logger.warning(f"Mask validation error: {e}")
|
| 1060 |
-
return True
|
| 1061 |
-
|
| 1062 |
-
def _fallback_segmentation(image: np.ndarray) -> np.ndarray:
|
| 1063 |
-
"""Legacy fallback segmentation; prefer _classical_segmentation_cascade"""
|
| 1064 |
-
try:
|
| 1065 |
-
logger.info("Using fallback segmentation strategy")
|
| 1066 |
-
h, w = image.shape[:2]
|
| 1067 |
-
|
| 1068 |
-
try:
|
| 1069 |
-
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 1070 |
-
|
| 1071 |
-
edge_pixels = np.concatenate([
|
| 1072 |
-
gray[0, :], gray[-1, :], gray[:, 0], gray[:, -1]
|
| 1073 |
-
])
|
| 1074 |
-
bg_color = np.median(edge_pixels)
|
| 1075 |
-
|
| 1076 |
-
diff = np.abs(gray.astype(float) - bg_color)
|
| 1077 |
-
mask = (diff > 30).astype(np.uint8) * 255
|
| 1078 |
-
|
| 1079 |
-
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
|
| 1080 |
-
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
|
| 1081 |
-
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
|
| 1082 |
-
|
| 1083 |
-
if _validate_mask_quality(mask, image.shape[:2]):
|
| 1084 |
-
logger.info("Background subtraction fallback successful")
|
| 1085 |
-
return mask
|
| 1086 |
-
|
| 1087 |
-
except Exception as e:
|
| 1088 |
-
logger.warning(f"Background subtraction fallback failed: {e}")
|
| 1089 |
-
|
| 1090 |
-
# Geometric ellipse fallback
|
| 1091 |
-
mask = _geometric_person_mask(image)
|
| 1092 |
-
logger.info("Using geometric fallback mask")
|
| 1093 |
-
return mask
|
| 1094 |
-
|
| 1095 |
-
except Exception as e:
|
| 1096 |
-
logger.error(f"All fallback strategies failed: {e}")
|
| 1097 |
-
h, w = image.shape[:2]
|
| 1098 |
-
mask = np.zeros((h, w), dtype=np.uint8)
|
| 1099 |
-
mask[h//6:5*h//6, w//4:3*w//4] = 255
|
| 1100 |
-
return mask
|
| 1101 |
-
|
| 1102 |
-
def _guided_filter_approx(guide: np.ndarray, mask: np.ndarray, radius: int = 8, eps: float = 0.2) -> np.ndarray:
|
| 1103 |
-
"""Approximation of guided filter for edge-aware smoothing"""
|
| 1104 |
-
try:
|
| 1105 |
-
guide_gray = cv2.cvtColor(guide, cv2.COLOR_BGR2GRAY) if len(guide.shape) == 3 else guide
|
| 1106 |
-
guide_gray = guide_gray.astype(np.float32) / 255.0
|
| 1107 |
-
mask_float = mask.astype(np.float32) / 255.0
|
| 1108 |
-
|
| 1109 |
-
kernel_size = 2 * radius + 1
|
| 1110 |
-
|
| 1111 |
-
mean_guide = cv2.boxFilter(guide_gray, -1, (kernel_size, kernel_size))
|
| 1112 |
-
mean_mask = cv2.boxFilter(mask_float, -1, (kernel_size, kernel_size))
|
| 1113 |
-
corr_guide_mask = cv2.boxFilter(guide_gray * mask_float, -1, (kernel_size, kernel_size))
|
| 1114 |
-
|
| 1115 |
-
cov_guide_mask = corr_guide_mask - mean_guide * mean_mask
|
| 1116 |
-
mean_guide_sq = cv2.boxFilter(guide_gray * guide_gray, -1, (kernel_size, kernel_size))
|
| 1117 |
-
var_guide = mean_guide_sq - mean_guide * mean_guide
|
| 1118 |
-
|
| 1119 |
-
a = cov_guide_mask / (var_guide + eps)
|
| 1120 |
-
b = mean_mask - a * mean_guide
|
| 1121 |
-
|
| 1122 |
-
mean_a = cv2.boxFilter(a, -1, (kernel_size, kernel_size))
|
| 1123 |
-
mean_b = cv2.boxFilter(b, -1, (kernel_size, kernel_size))
|
| 1124 |
-
|
| 1125 |
-
output = mean_a * guide_gray + mean_b
|
| 1126 |
-
output = np.clip(output * 255, 0, 255).astype(np.uint8)
|
| 1127 |
-
|
| 1128 |
-
return output
|
| 1129 |
-
|
| 1130 |
-
except Exception as e:
|
| 1131 |
-
logger.warning(f"Guided filter approximation failed: {e}")
|
| 1132 |
-
return mask
|
| 1133 |
-
|
| 1134 |
-
# ============================================================================
|
| 1135 |
-
# HELPER FUNCTIONS - COMPOSITING
|
| 1136 |
-
# ============================================================================
|
| 1137 |
-
|
| 1138 |
-
def _advanced_compositing(frame: np.ndarray, mask: np.ndarray, background: np.ndarray) -> np.ndarray:
|
| 1139 |
-
"""Advanced compositing with edge feathering and color correction"""
|
| 1140 |
-
try:
|
| 1141 |
-
threshold = 100
|
| 1142 |
-
_, mask_binary = cv2.threshold(mask, threshold, 255, cv2.THRESH_BINARY)
|
| 1143 |
-
|
| 1144 |
-
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
| 1145 |
-
mask_binary = cv2.morphologyEx(mask_binary, cv2.MORPH_CLOSE, kernel)
|
| 1146 |
-
mask_binary = cv2.morphologyEx(mask_binary, cv2.MORPH_OPEN, kernel)
|
| 1147 |
-
|
| 1148 |
-
mask_smooth = cv2.GaussianBlur(mask_binary.astype(np.float32), (5, 5), 1.0) / 255.0
|
| 1149 |
-
mask_smooth = np.power(mask_smooth, 0.8)
|
| 1150 |
-
|
| 1151 |
-
mask_smooth = np.where(mask_smooth > 0.5,
|
| 1152 |
-
np.minimum(mask_smooth * 1.1, 1.0),
|
| 1153 |
-
mask_smooth * 0.9)
|
| 1154 |
-
|
| 1155 |
-
frame_adjusted = _color_match_edges(frame, background, mask_smooth)
|
| 1156 |
-
|
| 1157 |
-
alpha_3ch = np.stack([mask_smooth] * 3, axis=2)
|
| 1158 |
-
|
| 1159 |
-
frame_float = frame_adjusted.astype(np.float32)
|
| 1160 |
-
background_float = background.astype(np.float32)
|
| 1161 |
-
|
| 1162 |
-
result = frame_float * alpha_3ch + background_float * (1 - alpha_3ch)
|
| 1163 |
-
result = np.clip(result, 0, 255).astype(np.uint8)
|
| 1164 |
-
|
| 1165 |
-
return result
|
| 1166 |
-
|
| 1167 |
-
except Exception as e:
|
| 1168 |
-
logger.error(f"Advanced compositing error: {e}")
|
| 1169 |
-
raise
|
| 1170 |
-
|
| 1171 |
-
def _color_match_edges(frame: np.ndarray, background: np.ndarray, alpha: np.ndarray) -> np.ndarray:
|
| 1172 |
-
"""Subtle color matching at edges to reduce halos"""
|
| 1173 |
-
try:
|
| 1174 |
-
edge_mask = cv2.Sobel(alpha, cv2.CV_64F, 1, 1, ksize=3)
|
| 1175 |
-
edge_mask = np.abs(edge_mask)
|
| 1176 |
-
edge_mask = (edge_mask > 0.1).astype(np.float32)
|
| 1177 |
-
|
| 1178 |
-
edge_areas = edge_mask > 0
|
| 1179 |
-
if not np.any(edge_areas):
|
| 1180 |
-
return frame
|
| 1181 |
-
|
| 1182 |
-
frame_adjusted = frame.copy().astype(np.float32)
|
| 1183 |
-
background_float = background.astype(np.float32)
|
| 1184 |
-
|
| 1185 |
-
adjustment_strength = 0.1
|
| 1186 |
-
for c in range(3):
|
| 1187 |
-
frame_adjusted[:, :, c] = np.where(
|
| 1188 |
-
edge_areas,
|
| 1189 |
-
frame_adjusted[:, :, c] * (1 - adjustment_strength) +
|
| 1190 |
-
background_float[:, :, c] * adjustment_strength,
|
| 1191 |
-
frame_adjusted[:, :, c]
|
| 1192 |
-
)
|
| 1193 |
-
|
| 1194 |
-
return np.clip(frame_adjusted, 0, 255).astype(np.uint8)
|
| 1195 |
-
|
| 1196 |
-
except Exception as e:
|
| 1197 |
-
logger.warning(f"Color matching failed: {e}")
|
| 1198 |
-
return frame
|
| 1199 |
-
|
| 1200 |
-
def _simple_compositing(frame: np.ndarray, mask: np.ndarray, background: np.ndarray) -> np.ndarray:
|
| 1201 |
-
"""Simple fallback compositing method"""
|
| 1202 |
-
try:
|
| 1203 |
-
logger.info("Using simple compositing fallback")
|
| 1204 |
-
|
| 1205 |
-
background = cv2.resize(background, (frame.shape[1], frame.shape[0]))
|
| 1206 |
-
|
| 1207 |
-
if len(mask.shape) == 3:
|
| 1208 |
-
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 1209 |
-
if mask.max() <= 1.0:
|
| 1210 |
-
mask = (mask * 255).astype(np.uint8)
|
| 1211 |
-
|
| 1212 |
-
_, mask_binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
|
| 1213 |
-
|
| 1214 |
-
mask_norm = mask_binary.astype(np.float32) / 255.0
|
| 1215 |
-
mask_3ch = np.stack([mask_norm] * 3, axis=2)
|
| 1216 |
-
|
| 1217 |
-
result = frame * mask_3ch + background * (1 - mask_3ch)
|
| 1218 |
-
return result.astype(np.uint8)
|
| 1219 |
-
|
| 1220 |
-
except Exception as e:
|
| 1221 |
-
logger.error(f"Simple compositing failed: {e}")
|
| 1222 |
-
return frame
|
| 1223 |
-
|
| 1224 |
-
# ============================================================================
|
| 1225 |
-
# HELPER FUNCTIONS - BACKGROUND CREATION
|
| 1226 |
-
# ============================================================================
|
| 1227 |
-
|
| 1228 |
-
def _create_solid_background(bg_config: Dict[str, Any], width: int, height: int) -> np.ndarray:
|
| 1229 |
-
"""Create solid color background (BGR)"""
|
| 1230 |
-
color_hex = bg_config["colors"][0].lstrip('#')
|
| 1231 |
-
color_rgb = tuple(int(color_hex[i:i+2], 16) for i in (0, 2, 4))
|
| 1232 |
-
color_bgr = color_rgb[::-1]
|
| 1233 |
-
return np.full((height, width, 3), color_bgr, dtype=np.uint8)
|
| 1234 |
-
|
| 1235 |
-
def _create_gradient_background_enhanced(bg_config: Dict[str, Any], width: int, height: int) -> np.ndarray:
|
| 1236 |
-
"""Create enhanced gradient background with better quality (BGR out)"""
|
| 1237 |
-
try:
|
| 1238 |
-
colors = bg_config["colors"]
|
| 1239 |
-
direction = bg_config.get("direction", "vertical")
|
| 1240 |
-
|
| 1241 |
-
rgb_colors = []
|
| 1242 |
-
for color_hex in colors:
|
| 1243 |
-
color_hex = color_hex.lstrip('#')
|
| 1244 |
-
rgb = tuple(int(color_hex[i:i+2], 16) for i in (0, 2, 4))
|
| 1245 |
-
rgb_colors.append(rgb)
|
| 1246 |
-
|
| 1247 |
-
if not rgb_colors:
|
| 1248 |
-
rgb_colors = [(128, 128, 128)]
|
| 1249 |
-
|
| 1250 |
-
if direction == "vertical":
|
| 1251 |
-
background = _create_vertical_gradient(rgb_colors, width, height)
|
| 1252 |
-
elif direction == "horizontal":
|
| 1253 |
-
background = _create_horizontal_gradient(rgb_colors, width, height)
|
| 1254 |
-
elif direction == "diagonal":
|
| 1255 |
-
background = _create_diagonal_gradient(rgb_colors, width, height)
|
| 1256 |
-
elif direction in ["radial", "soft_radial"]:
|
| 1257 |
-
background = _create_radial_gradient(rgb_colors, width, height, direction == "soft_radial")
|
| 1258 |
-
else:
|
| 1259 |
-
background = _create_vertical_gradient(rgb_colors, width, height)
|
| 1260 |
-
|
| 1261 |
-
return cv2.cvtColor(background, cv2.COLOR_RGB2BGR)
|
| 1262 |
-
|
| 1263 |
-
except Exception as e:
|
| 1264 |
-
logger.error(f"Gradient creation error: {e}")
|
| 1265 |
-
return np.full((height, width, 3), (128, 128, 128), dtype=np.uint8)
|
| 1266 |
-
|
| 1267 |
-
def _create_vertical_gradient(colors: list, width: int, height: int) -> np.ndarray:
|
| 1268 |
-
"""Create vertical gradient using NumPy for performance (RGB)"""
|
| 1269 |
-
gradient = np.zeros((height, width, 3), dtype=np.uint8)
|
| 1270 |
-
for y in range(height):
|
| 1271 |
-
progress = y / max(1, height)
|
| 1272 |
-
gradient[y, :] = _interpolate_color(colors, progress)
|
| 1273 |
-
return gradient
|
| 1274 |
-
|
| 1275 |
-
def _create_horizontal_gradient(colors: list, width: int, height: int) -> np.ndarray:
|
| 1276 |
-
"""Create horizontal gradient using NumPy for performance (RGB)"""
|
| 1277 |
-
gradient = np.zeros((height, width, 3), dtype=np.uint8)
|
| 1278 |
-
for x in range(width):
|
| 1279 |
-
progress = x / max(1, width)
|
| 1280 |
-
gradient[:, x] = _interpolate_color(colors, progress)
|
| 1281 |
-
return gradient
|
| 1282 |
-
|
| 1283 |
-
def _create_diagonal_gradient(colors: list, width: int, height: int) -> np.ndarray:
|
| 1284 |
-
"""Create diagonal gradient using vectorized operations (RGB)"""
|
| 1285 |
-
y_coords, x_coords = np.mgrid[0:height, 0:width]
|
| 1286 |
-
max_distance = width + height
|
| 1287 |
-
progress = (x_coords + y_coords) / max(1, max_distance)
|
| 1288 |
-
progress = np.clip(progress, 0, 1)
|
| 1289 |
-
|
| 1290 |
-
gradient = np.zeros((height, width, 3), dtype=np.uint8)
|
| 1291 |
-
for c in range(3):
|
| 1292 |
-
gradient[:, :, c] = _vectorized_color_interpolation(colors, progress, c)
|
| 1293 |
-
return gradient
|
| 1294 |
-
|
| 1295 |
-
def _create_radial_gradient(colors: list, width: int, height: int, soft: bool = False) -> np.ndarray:
|
| 1296 |
-
"""Create radial gradient using vectorized operations (RGB)"""
|
| 1297 |
-
center_x, center_y = width // 2, height // 2
|
| 1298 |
-
max_distance = np.sqrt(center_x**2 + center_y**2)
|
| 1299 |
-
|
| 1300 |
-
y_coords, x_coords = np.mgrid[0:height, 0:width]
|
| 1301 |
-
distances = np.sqrt((x_coords - center_x)**2 + (y_coords - center_y)**2)
|
| 1302 |
-
progress = distances / max(1e-6, max_distance)
|
| 1303 |
-
progress = np.clip(progress, 0, 1)
|
| 1304 |
-
|
| 1305 |
-
if soft:
|
| 1306 |
-
progress = np.power(progress, 0.7)
|
| 1307 |
-
|
| 1308 |
-
gradient = np.zeros((height, width, 3), dtype=np.uint8)
|
| 1309 |
-
for c in range(3):
|
| 1310 |
-
gradient[:, :, c] = _vectorized_color_interpolation(colors, progress, c)
|
| 1311 |
-
|
| 1312 |
-
return gradient
|
| 1313 |
-
|
| 1314 |
-
def _vectorized_color_interpolation(colors: list, progress: np.ndarray, channel: int) -> np.ndarray:
|
| 1315 |
-
"""Vectorized color interpolation for performance"""
|
| 1316 |
-
if len(colors) == 1:
|
| 1317 |
-
return np.full_like(progress, colors[0][channel], dtype=np.uint8)
|
| 1318 |
-
|
| 1319 |
-
num_segments = len(colors) - 1
|
| 1320 |
-
segment_progress = progress * num_segments
|
| 1321 |
-
segment_indices = np.floor(segment_progress).astype(int)
|
| 1322 |
-
segment_indices = np.clip(segment_indices, 0, num_segments - 1)
|
| 1323 |
-
local_progress = segment_progress - segment_indices
|
| 1324 |
-
|
| 1325 |
-
start_colors = np.array([colors[i][channel] for i in range(len(colors))])
|
| 1326 |
-
end_colors = np.array([colors[min(i + 1, len(colors) - 1)][channel] for i in range(len(colors))])
|
| 1327 |
-
|
| 1328 |
-
start_vals = start_colors[segment_indices]
|
| 1329 |
-
end_vals = end_colors[segment_indices]
|
| 1330 |
-
|
| 1331 |
-
result = start_vals + (end_vals - start_vals) * local_progress
|
| 1332 |
-
return np.clip(result, 0, 255).astype(np.uint8)
|
| 1333 |
-
|
| 1334 |
-
def _interpolate_color(colors: list, progress: float) -> tuple:
|
| 1335 |
-
"""Interpolate between multiple colors (RGB tuple)"""
|
| 1336 |
-
if len(colors) == 1:
|
| 1337 |
-
return colors[0]
|
| 1338 |
-
elif len(colors) == 2:
|
| 1339 |
-
r = int(colors[0][0] + (colors[1][0] - colors[0][0]) * progress)
|
| 1340 |
-
g = int(colors[0][1] + (colors[1][1] - colors[0][1]) * progress)
|
| 1341 |
-
b = int(colors[0][2] + (colors[1][2] - colors[0][2]) * progress)
|
| 1342 |
-
return (r, g, b)
|
| 1343 |
-
else:
|
| 1344 |
-
segment = progress * (len(colors) - 1)
|
| 1345 |
-
idx = int(segment)
|
| 1346 |
-
local_progress = max(0.0, min(1.0, segment - idx))
|
| 1347 |
-
if idx >= len(colors) - 1:
|
| 1348 |
-
return colors[-1]
|
| 1349 |
-
c1, c2 = colors[idx], colors[idx + 1]
|
| 1350 |
-
r = int(c1[0] + (c2[0] - c1[0]) * local_progress)
|
| 1351 |
-
g = int(c1[1] + (c2[1] - c1[1]) * local_progress)
|
| 1352 |
-
b = int(c1[2] + (c2[2] - c1[2]) * local_progress)
|
| 1353 |
-
return (r, g, b)
|
| 1354 |
-
|
| 1355 |
-
def _apply_background_adjustments(background: np.ndarray, bg_config: Dict[str, Any]) -> np.ndarray:
|
| 1356 |
-
"""Apply brightness and contrast adjustments to background"""
|
| 1357 |
-
try:
|
| 1358 |
-
brightness = bg_config.get("brightness", 1.0)
|
| 1359 |
-
contrast = bg_config.get("contrast", 1.0)
|
| 1360 |
-
|
| 1361 |
-
if brightness != 1.0 or contrast != 1.0:
|
| 1362 |
-
background = background.astype(np.float32)
|
| 1363 |
-
background = background * contrast * brightness
|
| 1364 |
-
background = np.clip(background, 0, 255).astype(np.uint8)
|
| 1365 |
|
| 1366 |
-
return
|
| 1367 |
|
| 1368 |
except Exception as e:
|
| 1369 |
-
logger.
|
| 1370 |
-
return
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
cv_processing.py · slim orchestrator layer
|
| 4 |
+
──────────────────────────────────────────────────────────────────────────────
|
| 5 |
+
Keeps the public API (segment_person_hq, refine_mask_hq, replace_background_hq,
|
| 6 |
+
create_professional_background, validate_video_file) exactly the same so that
|
| 7 |
+
existing callers do **not** need to change their imports.
|
| 8 |
+
|
| 9 |
+
All heavy-lifting implementations live in:
|
| 10 |
+
utils.segmentation
|
| 11 |
+
utils.refinement
|
| 12 |
+
utils.compositing
|
| 13 |
+
utils.background_factory
|
| 14 |
+
utils.background_presets
|
| 15 |
"""
|
| 16 |
|
| 17 |
+
from __future__ import annotations
|
| 18 |
+
|
| 19 |
+
# ── std / 3rd-party ────────────────────────────────────────────────────────
|
| 20 |
+
import os, logging, cv2, numpy as np
|
| 21 |
+
from pathlib import Path
|
| 22 |
+
from typing import Tuple, Dict, Any, Optional
|
| 23 |
+
|
| 24 |
+
# ── project helpers (new modules we split out) ─────────────────────────────
|
| 25 |
+
from utils.segmentation import (
|
| 26 |
+
segment_person_hq,
|
| 27 |
+
segment_person_hq_original,
|
| 28 |
+
SegmentationError,
|
| 29 |
+
)
|
| 30 |
+
from utils.refinement import (
|
| 31 |
+
refine_mask_hq, MaskRefinementError,
|
| 32 |
+
)
|
| 33 |
+
from utils.compositing import (
|
| 34 |
+
replace_background_hq, BackgroundReplacementError,
|
| 35 |
+
)
|
| 36 |
+
from utils.background_factory import create_professional_background
|
| 37 |
+
from utils.background_presets import PROFESSIONAL_BACKGROUNDS # still used in the UI
|
| 38 |
|
| 39 |
logger = logging.getLogger(__name__)
|
| 40 |
|
| 41 |
+
# ----------------------------------------------------------------------------
|
| 42 |
+
# LIGHT CONFIG – only what the UI still needs
|
| 43 |
+
# ----------------------------------------------------------------------------
|
| 44 |
+
USE_AUTO_TEMPORAL_CONSISTENCY = True # placeholder for future smoothing
|
| 45 |
+
|
| 46 |
+
# Validator soft-limits (kept here because validate_video_file still lives here)
|
| 47 |
+
MIN_AREA_RATIO = 0.015
|
| 48 |
+
MAX_AREA_RATIO = 0.97
|
| 49 |
+
|
| 50 |
+
# ----------------------------------------------------------------------------
|
| 51 |
+
# PUBLIC 1-LINERS to keep old call-sites working
|
| 52 |
+
# ----------------------------------------------------------------------------
|
| 53 |
+
# (They’re just re-exports from their new homes.)
|
| 54 |
+
|
| 55 |
+
__all__ = [
|
| 56 |
+
"segment_person_hq",
|
| 57 |
+
"segment_person_hq_original",
|
| 58 |
+
"refine_mask_hq",
|
| 59 |
+
"replace_background_hq",
|
| 60 |
+
"create_professional_background",
|
| 61 |
+
"validate_video_file",
|
| 62 |
+
"SegmentationError",
|
| 63 |
+
"MaskRefinementError",
|
| 64 |
+
"BackgroundReplacementError",
|
| 65 |
+
"PROFESSIONAL_BACKGROUNDS",
|
| 66 |
+
]
|
| 67 |
+
|
| 68 |
+
# ----------------------------------------------------------------------------
|
| 69 |
+
# VIDEO VALIDATION (unchanged)
|
| 70 |
+
# ----------------------------------------------------------------------------
|
| 71 |
+
def validate_video_file(video_path: str) -> Tuple[bool, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
"""
|
| 73 |
+
Quick sanity-check before passing a file to OpenCV / FFmpeg.
|
| 74 |
+
Returns (ok, human_readable_reason)
|
| 75 |
"""
|
| 76 |
+
if not video_path or not Path(video_path).exists():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
return False, "Video file not found"
|
| 78 |
|
| 79 |
try:
|
| 80 |
+
size = Path(video_path).stat().st_size
|
| 81 |
+
if size == 0:
|
| 82 |
+
return False, "File is empty"
|
| 83 |
+
if size > 2 * 1024 * 1024 * 1024:
|
| 84 |
+
return False, "File > 2 GB — too large for the Space quota"
|
|
|
|
| 85 |
|
| 86 |
cap = cv2.VideoCapture(video_path)
|
| 87 |
if not cap.isOpened():
|
| 88 |
+
return False, "OpenCV cannot read the file"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
n_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 91 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 92 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 93 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 94 |
cap.release()
|
| 95 |
|
| 96 |
+
if n_frames == 0:
|
| 97 |
+
return False, "No frames detected"
|
|
|
|
| 98 |
if fps <= 0 or fps > 120:
|
| 99 |
+
return False, f"Suspicious FPS: {fps}"
|
| 100 |
+
if w <= 0 or h <= 0:
|
| 101 |
+
return False, "Zero resolution"
|
| 102 |
+
if w > 4096 or h > 4096:
|
| 103 |
+
return False, f"Resolution {w}×{h} too high (max 4 096²)"
|
| 104 |
+
if (n_frames / fps) > 300:
|
| 105 |
+
return False, "Video longer than 5 minutes"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
return True, f"OK → {w}×{h}, {fps:.1f} fps, {n_frames/fps:.1f} s"
|
| 108 |
|
| 109 |
except Exception as e:
|
| 110 |
+
logger.error(f"validate_video_file: {e}")
|
| 111 |
+
return False, f"Validation error: {e}"
|