Update models/loaders/model_loader.py
Browse files- models/loaders/model_loader.py +103 -58
models/loaders/model_loader.py
CHANGED
|
@@ -2,6 +2,14 @@
|
|
| 2 |
"""
|
| 3 |
Unified Model Loader
|
| 4 |
Coordinates separate SAM2 and MatAnyone loaders for cleaner architecture
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
"""
|
| 6 |
|
| 7 |
from __future__ import annotations
|
|
@@ -27,7 +35,7 @@
|
|
| 27 |
|
| 28 |
class LoadedModel:
|
| 29 |
"""Container for loaded model information"""
|
| 30 |
-
def __init__(self, model=None, model_id: str = "", load_time: float = 0.0,
|
| 31 |
device: str = "", framework: str = ""):
|
| 32 |
self.model = model
|
| 33 |
self.model_id = model_id
|
|
@@ -42,25 +50,26 @@ def to_dict(self) -> Dict[str, Any]:
|
|
| 42 |
"device": self.device,
|
| 43 |
"load_time": self.load_time,
|
| 44 |
"loaded": self.model is not None,
|
|
|
|
| 45 |
}
|
| 46 |
|
| 47 |
|
| 48 |
class ModelLoader:
|
| 49 |
"""Main model loader that coordinates SAM2 and MatAnyone loaders"""
|
| 50 |
-
|
| 51 |
def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
|
| 52 |
self.device_manager = device_mgr
|
| 53 |
self.memory_manager = memory_mgr
|
| 54 |
self.device = self.device_manager.get_optimal_device()
|
| 55 |
-
|
| 56 |
# Initialize specialized loaders
|
| 57 |
self.sam2_loader = SAM2Loader(device=str(self.device))
|
| 58 |
self.matanyone_loader = MatAnyoneLoader(device=str(self.device))
|
| 59 |
-
|
| 60 |
# Model storage
|
| 61 |
self.sam2_predictor: Optional[LoadedModel] = None
|
| 62 |
self.matanyone_model: Optional[LoadedModel] = None
|
| 63 |
-
|
| 64 |
# Statistics
|
| 65 |
self.loading_stats = {
|
| 66 |
"sam2_load_time": 0.0,
|
|
@@ -69,7 +78,7 @@ def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
|
|
| 69 |
"models_loaded": False,
|
| 70 |
"loading_attempts": 0,
|
| 71 |
}
|
| 72 |
-
|
| 73 |
logger.info(f"ModelLoader initialized for device: {self.device}")
|
| 74 |
|
| 75 |
def load_all_models(
|
|
@@ -79,33 +88,29 @@ def load_all_models(
|
|
| 79 |
) -> Tuple[Optional[LoadedModel], Optional[LoadedModel]]:
|
| 80 |
"""
|
| 81 |
Load all models using specialized loaders
|
| 82 |
-
|
| 83 |
-
Args:
|
| 84 |
-
progress_callback: Optional callback for progress updates
|
| 85 |
-
cancel_event: Optional threading.Event for cancellation
|
| 86 |
-
|
| 87 |
Returns:
|
| 88 |
Tuple of (sam2_model, matanyone_model)
|
| 89 |
"""
|
| 90 |
start_time = time.time()
|
| 91 |
self.loading_stats["loading_attempts"] += 1
|
| 92 |
-
|
| 93 |
try:
|
| 94 |
logger.info("Starting model loading process...")
|
| 95 |
if progress_callback:
|
| 96 |
progress_callback(0.0, "Initializing model loading...")
|
| 97 |
-
|
| 98 |
# Clean up any existing models
|
| 99 |
self._cleanup_models()
|
| 100 |
-
|
| 101 |
-
# Load SAM2
|
| 102 |
if progress_callback:
|
| 103 |
progress_callback(0.1, "Loading SAM2 model...")
|
| 104 |
-
|
| 105 |
sam2_start = time.time()
|
| 106 |
sam2_model = self.sam2_loader.load()
|
| 107 |
sam2_time = time.time() - sam2_start
|
| 108 |
-
|
| 109 |
if sam2_model:
|
| 110 |
self.sam2_predictor = LoadedModel(
|
| 111 |
model=sam2_model,
|
|
@@ -118,21 +123,21 @@ def load_all_models(
|
|
| 118 |
logger.info(f"SAM2 loaded in {sam2_time:.2f}s")
|
| 119 |
else:
|
| 120 |
logger.warning("SAM2 loading failed")
|
| 121 |
-
|
| 122 |
-
#
|
| 123 |
if cancel_event and cancel_event.is_set():
|
| 124 |
if progress_callback:
|
| 125 |
progress_callback(1.0, "Model loading cancelled")
|
| 126 |
return self.sam2_predictor, None
|
| 127 |
-
|
| 128 |
-
# Load MatAnyone
|
| 129 |
if progress_callback:
|
| 130 |
progress_callback(0.6, "Loading MatAnyone model...")
|
| 131 |
-
|
| 132 |
matanyone_start = time.time()
|
| 133 |
-
matanyone_model = self.matanyone_loader.load()
|
| 134 |
matanyone_time = time.time() - matanyone_start
|
| 135 |
-
|
| 136 |
if matanyone_model:
|
| 137 |
self.matanyone_model = LoadedModel(
|
| 138 |
model=matanyone_model,
|
|
@@ -145,31 +150,30 @@ def load_all_models(
|
|
| 145 |
logger.info(f"MatAnyone loaded in {matanyone_time:.2f}s")
|
| 146 |
else:
|
| 147 |
logger.warning("MatAnyone loading failed")
|
| 148 |
-
|
| 149 |
-
#
|
| 150 |
total_time = time.time() - start_time
|
| 151 |
self.loading_stats["total_load_time"] = total_time
|
| 152 |
self.loading_stats["models_loaded"] = bool(self.sam2_predictor or self.matanyone_model)
|
| 153 |
-
|
| 154 |
-
# Final progress update
|
| 155 |
if progress_callback:
|
| 156 |
if self.loading_stats["models_loaded"]:
|
| 157 |
progress_callback(1.0, "Models loaded successfully")
|
| 158 |
else:
|
| 159 |
progress_callback(1.0, "Model loading completed with failures")
|
| 160 |
-
|
| 161 |
logger.info(f"Model loading completed in {total_time:.2f}s")
|
| 162 |
return self.sam2_predictor, self.matanyone_model
|
| 163 |
-
|
| 164 |
except Exception as e:
|
| 165 |
error_msg = f"Model loading failed: {str(e)}"
|
| 166 |
logger.error(error_msg)
|
| 167 |
self._cleanup_models()
|
| 168 |
self.loading_stats["models_loaded"] = False
|
| 169 |
-
|
| 170 |
if progress_callback:
|
| 171 |
progress_callback(1.0, f"Error: {error_msg}")
|
| 172 |
-
|
| 173 |
return None, None
|
| 174 |
|
| 175 |
def reload_models(
|
|
@@ -192,70 +196,105 @@ def get_sam2(self):
|
|
| 192 |
return self.sam2_predictor.model if self.sam2_predictor else None
|
| 193 |
|
| 194 |
def get_matanyone(self):
|
| 195 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
return self.matanyone_model.model if self.matanyone_model else None
|
| 197 |
|
| 198 |
def validate_models(self) -> bool:
|
| 199 |
"""Validate that loaded models have expected interfaces"""
|
| 200 |
try:
|
| 201 |
valid = False
|
| 202 |
-
|
|
|
|
| 203 |
if self.sam2_predictor:
|
| 204 |
model = self.sam2_predictor.model
|
| 205 |
if hasattr(model, "set_image") and hasattr(model, "predict"):
|
| 206 |
valid = True
|
| 207 |
logger.info("SAM2 model validated")
|
| 208 |
-
|
|
|
|
| 209 |
if self.matanyone_model:
|
| 210 |
model = self.matanyone_model.model
|
| 211 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
valid = True
|
| 213 |
-
logger.info("MatAnyone
|
| 214 |
-
|
|
|
|
|
|
|
| 215 |
return valid
|
| 216 |
-
|
| 217 |
except Exception as e:
|
| 218 |
logger.error(f"Model validation failed: {e}")
|
| 219 |
return False
|
| 220 |
|
| 221 |
def get_model_info(self) -> Dict[str, Any]:
|
| 222 |
"""Get detailed information about loaded models"""
|
| 223 |
-
info = {
|
| 224 |
"models_loaded": self.loading_stats["models_loaded"],
|
| 225 |
"device": str(self.device),
|
| 226 |
"loading_stats": self.loading_stats.copy(),
|
| 227 |
}
|
| 228 |
-
|
| 229 |
# Add SAM2 info
|
| 230 |
info["sam2"] = self.sam2_loader.get_info() if self.sam2_loader else {}
|
| 231 |
-
|
| 232 |
-
# Add MatAnyone info
|
| 233 |
-
|
| 234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
return info
|
| 236 |
|
| 237 |
def get_load_summary(self) -> str:
|
| 238 |
"""Get human-readable loading summary"""
|
| 239 |
if not self.loading_stats["models_loaded"]:
|
| 240 |
return "No models loaded"
|
| 241 |
-
|
| 242 |
lines = []
|
| 243 |
lines.append(f"Models loaded in {self.loading_stats['total_load_time']:.1f}s")
|
| 244 |
-
|
| 245 |
if self.sam2_predictor:
|
| 246 |
lines.append(f"✓ SAM2: {self.loading_stats['sam2_load_time']:.1f}s")
|
| 247 |
lines.append(f" Model: {self.sam2_predictor.model_id}")
|
| 248 |
else:
|
| 249 |
lines.append("✗ SAM2: Failed to load")
|
| 250 |
-
|
| 251 |
if self.matanyone_model:
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
lines.append(f" Model: {self.matanyone_model.model_id}")
|
| 254 |
else:
|
| 255 |
lines.append("✗ MatAnyone: Failed to load")
|
| 256 |
-
|
| 257 |
lines.append(f"Device: {self.device}")
|
| 258 |
-
|
| 259 |
return "\n".join(lines)
|
| 260 |
|
| 261 |
def cleanup(self):
|
|
@@ -269,21 +308,27 @@ def _cleanup_models(self):
|
|
| 269 |
if self.sam2_loader:
|
| 270 |
self.sam2_loader.cleanup()
|
| 271 |
if self.sam2_predictor:
|
| 272 |
-
|
|
|
|
|
|
|
|
|
|
| 273 |
self.sam2_predictor = None
|
| 274 |
-
|
| 275 |
# Clean up MatAnyone
|
| 276 |
if self.matanyone_loader:
|
| 277 |
self.matanyone_loader.cleanup()
|
| 278 |
if self.matanyone_model:
|
| 279 |
-
|
|
|
|
|
|
|
|
|
|
| 280 |
self.matanyone_model = None
|
| 281 |
-
|
| 282 |
# Clear CUDA cache
|
| 283 |
if torch.cuda.is_available():
|
| 284 |
torch.cuda.empty_cache()
|
| 285 |
-
|
| 286 |
# Garbage collection
|
| 287 |
gc.collect()
|
| 288 |
-
|
| 289 |
-
logger.debug("Model cleanup completed")
|
|
|
|
| 2 |
"""
|
| 3 |
Unified Model Loader
|
| 4 |
Coordinates separate SAM2 and MatAnyone loaders for cleaner architecture
|
| 5 |
+
|
| 6 |
+
Notes:
|
| 7 |
+
- SAM2: exposes set_image(...) and predict(...)
|
| 8 |
+
- MatAnyone: our loader returns a stateful callable adapter:
|
| 9 |
+
- callable(adapter) -> frame0: adapter(image_rgb01, mask01), frames>0: adapter(image_rgb01)
|
| 10 |
+
- optional: adapter.reset() to clear per-video memory
|
| 11 |
+
We therefore validate MatAnyone by checking "callable(...)" and/or presence of "reset",
|
| 12 |
+
not only ".step/.process".
|
| 13 |
"""
|
| 14 |
|
| 15 |
from __future__ import annotations
|
|
|
|
| 35 |
|
| 36 |
class LoadedModel:
|
| 37 |
"""Container for loaded model information"""
|
| 38 |
+
def __init__(self, model=None, model_id: str = "", load_time: float = 0.0,
|
| 39 |
device: str = "", framework: str = ""):
|
| 40 |
self.model = model
|
| 41 |
self.model_id = model_id
|
|
|
|
| 50 |
"device": self.device,
|
| 51 |
"load_time": self.load_time,
|
| 52 |
"loaded": self.model is not None,
|
| 53 |
+
"model_type": type(self.model).__name__ if self.model is not None else None,
|
| 54 |
}
|
| 55 |
|
| 56 |
|
| 57 |
class ModelLoader:
|
| 58 |
"""Main model loader that coordinates SAM2 and MatAnyone loaders"""
|
| 59 |
+
|
| 60 |
def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
|
| 61 |
self.device_manager = device_mgr
|
| 62 |
self.memory_manager = memory_mgr
|
| 63 |
self.device = self.device_manager.get_optimal_device()
|
| 64 |
+
|
| 65 |
# Initialize specialized loaders
|
| 66 |
self.sam2_loader = SAM2Loader(device=str(self.device))
|
| 67 |
self.matanyone_loader = MatAnyoneLoader(device=str(self.device))
|
| 68 |
+
|
| 69 |
# Model storage
|
| 70 |
self.sam2_predictor: Optional[LoadedModel] = None
|
| 71 |
self.matanyone_model: Optional[LoadedModel] = None
|
| 72 |
+
|
| 73 |
# Statistics
|
| 74 |
self.loading_stats = {
|
| 75 |
"sam2_load_time": 0.0,
|
|
|
|
| 78 |
"models_loaded": False,
|
| 79 |
"loading_attempts": 0,
|
| 80 |
}
|
| 81 |
+
|
| 82 |
logger.info(f"ModelLoader initialized for device: {self.device}")
|
| 83 |
|
| 84 |
def load_all_models(
|
|
|
|
| 88 |
) -> Tuple[Optional[LoadedModel], Optional[LoadedModel]]:
|
| 89 |
"""
|
| 90 |
Load all models using specialized loaders
|
| 91 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
Returns:
|
| 93 |
Tuple of (sam2_model, matanyone_model)
|
| 94 |
"""
|
| 95 |
start_time = time.time()
|
| 96 |
self.loading_stats["loading_attempts"] += 1
|
| 97 |
+
|
| 98 |
try:
|
| 99 |
logger.info("Starting model loading process...")
|
| 100 |
if progress_callback:
|
| 101 |
progress_callback(0.0, "Initializing model loading...")
|
| 102 |
+
|
| 103 |
# Clean up any existing models
|
| 104 |
self._cleanup_models()
|
| 105 |
+
|
| 106 |
+
# -------------------- Load SAM2 -------------------- #
|
| 107 |
if progress_callback:
|
| 108 |
progress_callback(0.1, "Loading SAM2 model...")
|
| 109 |
+
|
| 110 |
sam2_start = time.time()
|
| 111 |
sam2_model = self.sam2_loader.load()
|
| 112 |
sam2_time = time.time() - sam2_start
|
| 113 |
+
|
| 114 |
if sam2_model:
|
| 115 |
self.sam2_predictor = LoadedModel(
|
| 116 |
model=sam2_model,
|
|
|
|
| 123 |
logger.info(f"SAM2 loaded in {sam2_time:.2f}s")
|
| 124 |
else:
|
| 125 |
logger.warning("SAM2 loading failed")
|
| 126 |
+
|
| 127 |
+
# Cancellation check
|
| 128 |
if cancel_event and cancel_event.is_set():
|
| 129 |
if progress_callback:
|
| 130 |
progress_callback(1.0, "Model loading cancelled")
|
| 131 |
return self.sam2_predictor, None
|
| 132 |
+
|
| 133 |
+
# ----------------- Load MatAnyone ------------------ #
|
| 134 |
if progress_callback:
|
| 135 |
progress_callback(0.6, "Loading MatAnyone model...")
|
| 136 |
+
|
| 137 |
matanyone_start = time.time()
|
| 138 |
+
matanyone_model = self.matanyone_loader.load() # returns stateful callable adapter or None
|
| 139 |
matanyone_time = time.time() - matanyone_start
|
| 140 |
+
|
| 141 |
if matanyone_model:
|
| 142 |
self.matanyone_model = LoadedModel(
|
| 143 |
model=matanyone_model,
|
|
|
|
| 150 |
logger.info(f"MatAnyone loaded in {matanyone_time:.2f}s")
|
| 151 |
else:
|
| 152 |
logger.warning("MatAnyone loading failed")
|
| 153 |
+
|
| 154 |
+
# ----------------- Finalize stats ------------------ #
|
| 155 |
total_time = time.time() - start_time
|
| 156 |
self.loading_stats["total_load_time"] = total_time
|
| 157 |
self.loading_stats["models_loaded"] = bool(self.sam2_predictor or self.matanyone_model)
|
| 158 |
+
|
|
|
|
| 159 |
if progress_callback:
|
| 160 |
if self.loading_stats["models_loaded"]:
|
| 161 |
progress_callback(1.0, "Models loaded successfully")
|
| 162 |
else:
|
| 163 |
progress_callback(1.0, "Model loading completed with failures")
|
| 164 |
+
|
| 165 |
logger.info(f"Model loading completed in {total_time:.2f}s")
|
| 166 |
return self.sam2_predictor, self.matanyone_model
|
| 167 |
+
|
| 168 |
except Exception as e:
|
| 169 |
error_msg = f"Model loading failed: {str(e)}"
|
| 170 |
logger.error(error_msg)
|
| 171 |
self._cleanup_models()
|
| 172 |
self.loading_stats["models_loaded"] = False
|
| 173 |
+
|
| 174 |
if progress_callback:
|
| 175 |
progress_callback(1.0, f"Error: {error_msg}")
|
| 176 |
+
|
| 177 |
return None, None
|
| 178 |
|
| 179 |
def reload_models(
|
|
|
|
| 196 |
return self.sam2_predictor.model if self.sam2_predictor else None
|
| 197 |
|
| 198 |
def get_matanyone(self):
|
| 199 |
+
"""
|
| 200 |
+
Get MatAnyone processor model.
|
| 201 |
+
|
| 202 |
+
IMPORTANT: This returns the stateful callable adapter from MatAnyoneLoader:
|
| 203 |
+
- callable(image_rgb01[, mask01]) -> 2D alpha
|
| 204 |
+
- optional .reset() to clear memory per video
|
| 205 |
+
"""
|
| 206 |
return self.matanyone_model.model if self.matanyone_model else None
|
| 207 |
|
| 208 |
def validate_models(self) -> bool:
|
| 209 |
"""Validate that loaded models have expected interfaces"""
|
| 210 |
try:
|
| 211 |
valid = False
|
| 212 |
+
|
| 213 |
+
# Validate SAM2
|
| 214 |
if self.sam2_predictor:
|
| 215 |
model = self.sam2_predictor.model
|
| 216 |
if hasattr(model, "set_image") and hasattr(model, "predict"):
|
| 217 |
valid = True
|
| 218 |
logger.info("SAM2 model validated")
|
| 219 |
+
|
| 220 |
+
# Validate MatAnyone (stateful adapter OR raw core)
|
| 221 |
if self.matanyone_model:
|
| 222 |
model = self.matanyone_model.model
|
| 223 |
+
if callable(model):
|
| 224 |
+
valid = True
|
| 225 |
+
logger.info("MatAnyone adapter validated (callable)")
|
| 226 |
+
elif hasattr(model, "step") or hasattr(model, "process"):
|
| 227 |
+
valid = True
|
| 228 |
+
logger.info("MatAnyone core validated (.step/.process)")
|
| 229 |
+
elif hasattr(model, "reset"):
|
| 230 |
+
# still accept an adapter exposing reset but not callable (unlikely)
|
| 231 |
valid = True
|
| 232 |
+
logger.info("MatAnyone object validated via reset()")
|
| 233 |
+
else:
|
| 234 |
+
logger.warning("MatAnyone present but interface not recognized")
|
| 235 |
+
|
| 236 |
return valid
|
| 237 |
+
|
| 238 |
except Exception as e:
|
| 239 |
logger.error(f"Model validation failed: {e}")
|
| 240 |
return False
|
| 241 |
|
| 242 |
def get_model_info(self) -> Dict[str, Any]:
|
| 243 |
"""Get detailed information about loaded models"""
|
| 244 |
+
info: Dict[str, Any] = {
|
| 245 |
"models_loaded": self.loading_stats["models_loaded"],
|
| 246 |
"device": str(self.device),
|
| 247 |
"loading_stats": self.loading_stats.copy(),
|
| 248 |
}
|
| 249 |
+
|
| 250 |
# Add SAM2 info
|
| 251 |
info["sam2"] = self.sam2_loader.get_info() if self.sam2_loader else {}
|
| 252 |
+
|
| 253 |
+
# Add MatAnyone info (augment with interface hints)
|
| 254 |
+
mat_info = self.matanyone_loader.get_info() if self.matanyone_loader else {}
|
| 255 |
+
try:
|
| 256 |
+
m = self.get_matanyone()
|
| 257 |
+
mat_info["callable"] = bool(callable(m))
|
| 258 |
+
mat_info["has_reset"] = bool(hasattr(m, "reset"))
|
| 259 |
+
mat_info["has_step"] = bool(hasattr(m, "step"))
|
| 260 |
+
mat_info["has_process"] = bool(hasattr(m, "process"))
|
| 261 |
+
except Exception:
|
| 262 |
+
pass
|
| 263 |
+
info["matanyone"] = mat_info
|
| 264 |
+
|
| 265 |
return info
|
| 266 |
|
| 267 |
def get_load_summary(self) -> str:
|
| 268 |
"""Get human-readable loading summary"""
|
| 269 |
if not self.loading_stats["models_loaded"]:
|
| 270 |
return "No models loaded"
|
| 271 |
+
|
| 272 |
lines = []
|
| 273 |
lines.append(f"Models loaded in {self.loading_stats['total_load_time']:.1f}s")
|
| 274 |
+
|
| 275 |
if self.sam2_predictor:
|
| 276 |
lines.append(f"✓ SAM2: {self.loading_stats['sam2_load_time']:.1f}s")
|
| 277 |
lines.append(f" Model: {self.sam2_predictor.model_id}")
|
| 278 |
else:
|
| 279 |
lines.append("✗ SAM2: Failed to load")
|
| 280 |
+
|
| 281 |
if self.matanyone_model:
|
| 282 |
+
# Describe adapter/callable for clarity
|
| 283 |
+
iface = []
|
| 284 |
+
m = self.matanyone_model.model
|
| 285 |
+
if callable(m): iface.append("callable")
|
| 286 |
+
if hasattr(m, "reset"): iface.append("reset")
|
| 287 |
+
if hasattr(m, "step"): iface.append("step")
|
| 288 |
+
if hasattr(m, "process"): iface.append("process")
|
| 289 |
+
iface_str = f" ({', '.join(iface)})" if iface else ""
|
| 290 |
+
|
| 291 |
+
lines.append(f"✓ MatAnyone: {self.loading_stats['matanyone_load_time']:.1f}s{iface_str}")
|
| 292 |
lines.append(f" Model: {self.matanyone_model.model_id}")
|
| 293 |
else:
|
| 294 |
lines.append("✗ MatAnyone: Failed to load")
|
| 295 |
+
|
| 296 |
lines.append(f"Device: {self.device}")
|
| 297 |
+
|
| 298 |
return "\n".join(lines)
|
| 299 |
|
| 300 |
def cleanup(self):
|
|
|
|
| 308 |
if self.sam2_loader:
|
| 309 |
self.sam2_loader.cleanup()
|
| 310 |
if self.sam2_predictor:
|
| 311 |
+
try:
|
| 312 |
+
del self.sam2_predictor
|
| 313 |
+
except Exception:
|
| 314 |
+
pass
|
| 315 |
self.sam2_predictor = None
|
| 316 |
+
|
| 317 |
# Clean up MatAnyone
|
| 318 |
if self.matanyone_loader:
|
| 319 |
self.matanyone_loader.cleanup()
|
| 320 |
if self.matanyone_model:
|
| 321 |
+
try:
|
| 322 |
+
del self.matanyone_model
|
| 323 |
+
except Exception:
|
| 324 |
+
pass
|
| 325 |
self.matanyone_model = None
|
| 326 |
+
|
| 327 |
# Clear CUDA cache
|
| 328 |
if torch.cuda.is_available():
|
| 329 |
torch.cuda.empty_cache()
|
| 330 |
+
|
| 331 |
# Garbage collection
|
| 332 |
gc.collect()
|
| 333 |
+
|
| 334 |
+
logger.debug("Model cleanup completed")
|