Update utils/cv_processing.py
Browse files- utils/cv_processing.py +292 -50
utils/cv_processing.py
CHANGED
|
@@ -1,72 +1,302 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
cv_processing.py Β· slim orchestrator layer
|
| 4 |
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
| 15 |
"""
|
| 16 |
|
| 17 |
from __future__ import annotations
|
| 18 |
|
| 19 |
-
|
| 20 |
-
import os, logging, cv2, numpy as np
|
| 21 |
from pathlib import Path
|
| 22 |
-
from typing
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
segment_person_hq,
|
| 27 |
-
segment_person_hq_original,
|
| 28 |
-
SegmentationError,
|
| 29 |
-
)
|
| 30 |
-
from utils.refinement import (
|
| 31 |
-
refine_mask_hq, MaskRefinementError,
|
| 32 |
-
)
|
| 33 |
-
from .compositing import (
|
| 34 |
-
replace_background_hq, BackgroundReplacementError,
|
| 35 |
-
)
|
| 36 |
-
from utils.background_factory import create_professional_background
|
| 37 |
-
from utils.background_presets import PROFESSIONAL_BACKGROUNDS # still used in the UI
|
| 38 |
|
| 39 |
logger = logging.getLogger(__name__)
|
| 40 |
|
| 41 |
# ----------------------------------------------------------------------------
|
| 42 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
# ----------------------------------------------------------------------------
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
# ----------------------------------------------------------------------------
|
| 51 |
-
#
|
| 52 |
# ----------------------------------------------------------------------------
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
-
"
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
# ----------------------------------------------------------------------------
|
| 69 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
# ----------------------------------------------------------------------------
|
| 71 |
def validate_video_file(video_path: str) -> Tuple[bool, str]:
|
| 72 |
"""
|
|
@@ -108,4 +338,16 @@ def validate_video_file(video_path: str) -> Tuple[bool, str]:
|
|
| 108 |
|
| 109 |
except Exception as e:
|
| 110 |
logger.error(f"validate_video_file: {e}")
|
| 111 |
-
return False, f"Validation error: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
cv_processing.py Β· slim orchestrator layer (self-contained)
|
| 4 |
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 5 |
+
Public API (unchanged):
|
| 6 |
+
- segment_person_hq(frame, predictor=None, fallback_enabled=True) -> mask (H,W) float32 [0..1]
|
| 7 |
+
- segment_person_hq_original(...) -> alias of segment_person_hq (back-compat)
|
| 8 |
+
- refine_mask_hq(frame, mask, matanyone=None, fallback_enabled=True) -> mask (H,W) float32 [0..1]
|
| 9 |
+
- replace_background_hq(frame, mask, background, fallback_enabled=True) -> frame uint8 (H,W,3)
|
| 10 |
+
- create_professional_background(key_or_cfg, width, height) -> RGB uint8 (H,W,3)
|
| 11 |
+
- validate_video_file(video_path) -> (bool, reason)
|
| 12 |
+
|
| 13 |
+
Design:
|
| 14 |
+
* NO imports from other utils.* modules β avoids circular imports.
|
| 15 |
+
* Torch & diffusers imported lazily inside functions.
|
| 16 |
+
* All masks are single-channel float32 in [0..1] at boundaries between stages.
|
| 17 |
+
* MatAnyOne step() is fed (N,C,H,W); no 5D tensors.
|
| 18 |
"""
|
| 19 |
|
| 20 |
from __future__ import annotations
|
| 21 |
|
| 22 |
+
import logging
|
|
|
|
| 23 |
from pathlib import Path
|
| 24 |
+
from typing import Any, Dict, Optional, Tuple
|
| 25 |
+
|
| 26 |
+
import cv2
|
| 27 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
logger = logging.getLogger(__name__)
|
| 30 |
|
| 31 |
# ----------------------------------------------------------------------------
|
| 32 |
+
# Background presets (minimal set; callers can keep their own catalog if needed)
|
| 33 |
+
# ----------------------------------------------------------------------------
|
| 34 |
+
PROFESSIONAL_BACKGROUNDS_LOCAL: Dict[str, Dict[str, Any]] = {
|
| 35 |
+
"office": {"color": (240, 248, 255), "gradient": True},
|
| 36 |
+
"studio": {"color": (32, 32, 32), "gradient": False},
|
| 37 |
+
"nature": {"color": (34, 139, 34), "gradient": True},
|
| 38 |
+
"abstract": {"color": (75, 0, 130), "gradient": True},
|
| 39 |
+
"white": {"color": (255, 255, 255), "gradient": False},
|
| 40 |
+
"black": {"color": (0, 0, 0), "gradient": False},
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
# ----------------------------------------------------------------------------
|
| 44 |
+
# Helpers
|
| 45 |
# ----------------------------------------------------------------------------
|
| 46 |
+
def _ensure_rgb(img: np.ndarray) -> np.ndarray:
|
| 47 |
+
"""Convert BGRβRGB if looks like BGR; otherwise pass-through."""
|
| 48 |
+
if img is None:
|
| 49 |
+
return img
|
| 50 |
+
if img.ndim == 3 and img.shape[2] == 3:
|
| 51 |
+
# Heuristic: assume OpenCV BGR
|
| 52 |
+
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 53 |
+
return img
|
| 54 |
|
| 55 |
+
def _ensure_bgr(img: np.ndarray) -> np.ndarray:
|
| 56 |
+
"""Convert RGBβBGR if looks like RGB; otherwise pass-through."""
|
| 57 |
+
if img is None:
|
| 58 |
+
return img
|
| 59 |
+
if img.ndim == 3 and img.shape[2] == 3:
|
| 60 |
+
# Heuristic: assume non-OpenCV images are RGB
|
| 61 |
+
return cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
| 62 |
+
return img
|
| 63 |
+
|
| 64 |
+
def _to_mask01(m: np.ndarray) -> np.ndarray:
|
| 65 |
+
"""Ensure single-channel float32 [0..1]."""
|
| 66 |
+
if m is None:
|
| 67 |
+
return None
|
| 68 |
+
if m.ndim == 3:
|
| 69 |
+
m = m[..., 0]
|
| 70 |
+
m = m.astype(np.float32)
|
| 71 |
+
if m.max() > 1.0:
|
| 72 |
+
m = m / 255.0
|
| 73 |
+
return np.clip(m, 0.0, 1.0)
|
| 74 |
+
|
| 75 |
+
def _feather(mask01: np.ndarray, k: int = 2) -> np.ndarray:
|
| 76 |
+
"""Small Gaussian feather for cleaner edges."""
|
| 77 |
+
if mask01.ndim == 3:
|
| 78 |
+
mask01 = mask01[..., 0]
|
| 79 |
+
k = max(1, int(k) * 2 + 1)
|
| 80 |
+
m = cv2.GaussianBlur((mask01 * 255.0).astype(np.uint8), (k, k), 0)
|
| 81 |
+
return (m.astype(np.float32) / 255.0)
|
| 82 |
+
|
| 83 |
+
def _vertical_gradient(top: Tuple[int,int,int], bottom: Tuple[int,int,int], width: int, height: int) -> np.ndarray:
|
| 84 |
+
bg = np.zeros((height, width, 3), dtype=np.uint8)
|
| 85 |
+
for y in range(height):
|
| 86 |
+
t = y / max(1, height - 1)
|
| 87 |
+
r = int(top[0] * (1 - t) + bottom[0] * t)
|
| 88 |
+
g = int(top[1] * (1 - t) + bottom[1] * t)
|
| 89 |
+
b = int(top[2] * (1 - t) + bottom[2] * t)
|
| 90 |
+
bg[y, :] = (r, g, b)
|
| 91 |
+
return bg
|
| 92 |
|
| 93 |
# ----------------------------------------------------------------------------
|
| 94 |
+
# Background creation (kept here to match public API)
|
| 95 |
# ----------------------------------------------------------------------------
|
| 96 |
+
def create_professional_background(key_or_cfg: Any, width: int, height: int) -> np.ndarray:
|
| 97 |
+
"""
|
| 98 |
+
Accepts:
|
| 99 |
+
- key: str in local preset dict
|
| 100 |
+
- cfg: {"color": (r,g,b), "gradient": bool}
|
| 101 |
+
Returns RGB uint8 image (H,W,3).
|
| 102 |
+
"""
|
| 103 |
+
if isinstance(key_or_cfg, str):
|
| 104 |
+
cfg = PROFESSIONAL_BACKGROUNDS_LOCAL.get(key_or_cfg, PROFESSIONAL_BACKGROUNDS_LOCAL["office"])
|
| 105 |
+
elif isinstance(key_or_cfg, dict):
|
| 106 |
+
cfg = key_or_cfg
|
| 107 |
+
else:
|
| 108 |
+
cfg = PROFESSIONAL_BACKGROUNDS_LOCAL["office"]
|
| 109 |
|
| 110 |
+
color = tuple(int(x) for x in cfg.get("color", (255, 255, 255)))
|
| 111 |
+
use_grad = bool(cfg.get("gradient", False))
|
| 112 |
+
|
| 113 |
+
if not use_grad:
|
| 114 |
+
return np.full((height, width, 3), color, dtype=np.uint8)
|
| 115 |
+
|
| 116 |
+
# Simple vertical gradient dark->base color
|
| 117 |
+
dark = (int(color[0]*0.7), int(color[1]*0.7), int(color[2]*0.7))
|
| 118 |
+
bg = _vertical_gradient(dark, color, width, height)
|
| 119 |
+
return bg # already RGB by convention
|
| 120 |
+
|
| 121 |
+
# ----------------------------------------------------------------------------
|
| 122 |
+
# Segmentation
|
| 123 |
+
# ----------------------------------------------------------------------------
|
| 124 |
+
def _simple_person_segmentation(frame_bgr: np.ndarray) -> np.ndarray:
|
| 125 |
+
"""
|
| 126 |
+
Very simple fallback segmentation by suppressing green/white backgrounds.
|
| 127 |
+
Returns mask01 (H,W) float32.
|
| 128 |
+
"""
|
| 129 |
+
hsv = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2HSV)
|
| 130 |
+
|
| 131 |
+
lower_green = np.array([40, 40, 40], dtype=np.uint8)
|
| 132 |
+
upper_green = np.array([80, 255, 255], dtype=np.uint8)
|
| 133 |
+
green_mask = cv2.inRange(hsv, lower_green, upper_green)
|
| 134 |
+
|
| 135 |
+
lower_white = np.array([0, 0, 200], dtype=np.uint8)
|
| 136 |
+
upper_white = np.array([180, 30, 255], dtype=np.uint8)
|
| 137 |
+
white_mask = cv2.inRange(hsv, lower_white, upper_white)
|
| 138 |
+
|
| 139 |
+
bg_mask = cv2.bitwise_or(green_mask, white_mask)
|
| 140 |
+
person_mask = cv2.bitwise_not(bg_mask)
|
| 141 |
+
|
| 142 |
+
kernel = np.ones((5, 5), np.uint8)
|
| 143 |
+
person_mask = cv2.morphologyEx(person_mask, cv2.MORPH_CLOSE, kernel)
|
| 144 |
+
person_mask = cv2.morphologyEx(person_mask, cv2.MORPH_OPEN, kernel)
|
| 145 |
+
|
| 146 |
+
return (person_mask.astype(np.float32) / 255.0)
|
| 147 |
+
|
| 148 |
+
def segment_person_hq(frame: np.ndarray, predictor: Optional[Any] = None, fallback_enabled: bool = True) -> np.ndarray:
|
| 149 |
+
"""
|
| 150 |
+
Try SAM2 predictor if available; return single-channel float32 mask in [0..1].
|
| 151 |
+
- predictor.set_image expects RGB
|
| 152 |
+
- predictor.predict returns masks with shapes (N,H,W) or (H,W)
|
| 153 |
+
"""
|
| 154 |
+
try:
|
| 155 |
+
if predictor is not None and hasattr(predictor, "set_image") and hasattr(predictor, "predict"):
|
| 156 |
+
rgb = _ensure_rgb(frame)
|
| 157 |
+
predictor.set_image(rgb)
|
| 158 |
+
h, w = rgb.shape[:2]
|
| 159 |
+
center = np.array([[w // 2, h // 2]])
|
| 160 |
+
labels = np.array([1])
|
| 161 |
+
masks, scores, _ = predictor.predict(
|
| 162 |
+
point_coords=center,
|
| 163 |
+
point_labels=labels,
|
| 164 |
+
multimask_output=True
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
# Normalize and pick best
|
| 168 |
+
if isinstance(masks, np.ndarray):
|
| 169 |
+
m = masks
|
| 170 |
+
else:
|
| 171 |
+
m = np.array(masks)
|
| 172 |
+
|
| 173 |
+
if m.ndim == 3: # N,H,W
|
| 174 |
+
idx = int(np.argmax(scores)) if scores is not None else 0
|
| 175 |
+
m = m[idx]
|
| 176 |
+
elif m.ndim == 2: # H,W
|
| 177 |
+
pass
|
| 178 |
+
else:
|
| 179 |
+
raise RuntimeError(f"Unexpected SAM2 mask shape: {m.shape}")
|
| 180 |
+
|
| 181 |
+
return _to_mask01(m)
|
| 182 |
+
|
| 183 |
+
except Exception as e:
|
| 184 |
+
logger.warning("SAM2 segmentation failed: %s", e)
|
| 185 |
+
|
| 186 |
+
return _simple_person_segmentation(frame) if fallback_enabled else np.ones(frame.shape[:2], dtype=np.float32)
|
| 187 |
+
|
| 188 |
+
# Back-compat alias (some code may import this)
|
| 189 |
+
segment_person_hq_original = segment_person_hq
|
| 190 |
+
|
| 191 |
+
# ----------------------------------------------------------------------------
|
| 192 |
+
# Refinement (MatAnyOne)
|
| 193 |
+
# ----------------------------------------------------------------------------
|
| 194 |
+
def _to_tensor_chw(img_uint8_bgr: np.ndarray) -> "torch.Tensor":
|
| 195 |
+
import torch
|
| 196 |
+
rgb = cv2.cvtColor(img_uint8_bgr, cv2.COLOR_BGR2RGB)
|
| 197 |
+
t = torch.from_numpy(rgb).permute(2, 0, 1).contiguous().float() / 255.0 # (3,H,W)
|
| 198 |
+
return t
|
| 199 |
+
|
| 200 |
+
def _mask_to_tensor01(mask01: np.ndarray) -> "torch.Tensor":
|
| 201 |
+
import torch
|
| 202 |
+
m = torch.from_numpy(mask01.astype(np.float32)).unsqueeze(0).unsqueeze(0) # (1,1,H,W)
|
| 203 |
+
return m
|
| 204 |
+
|
| 205 |
+
def _tensor_to_mask01(t: "torch.Tensor") -> np.ndarray:
|
| 206 |
+
import torch
|
| 207 |
+
if t.ndim == 4:
|
| 208 |
+
t = t[0, 0]
|
| 209 |
+
elif t.ndim == 3:
|
| 210 |
+
t = t[0]
|
| 211 |
+
return np.clip(t.detach().float().cpu().numpy(), 0.0, 1.0)
|
| 212 |
+
|
| 213 |
+
def _simple_mask_refinement(mask01: np.ndarray) -> np.ndarray:
|
| 214 |
+
m = (mask01 * 255.0).astype(np.uint8)
|
| 215 |
+
m = cv2.GaussianBlur(m, (5, 5), 0)
|
| 216 |
+
m = cv2.bilateralFilter(m, 9, 75, 75)
|
| 217 |
+
return (m.astype(np.float32) / 255.0)
|
| 218 |
+
|
| 219 |
+
def refine_mask_hq(frame: np.ndarray, mask: np.ndarray, matanyone: Optional[Any] = None, fallback_enabled: bool = True) -> np.ndarray:
|
| 220 |
+
"""
|
| 221 |
+
If MatAnyOne processor is available, refine the mask (single-channel).
|
| 222 |
+
- Converts inputs to tensors with shapes:
|
| 223 |
+
image: (1,3,H,W)
|
| 224 |
+
mask: (1,1,H,W)
|
| 225 |
+
- No 5D tensors; avoids conv2d errors like [1,1,3,720,1280].
|
| 226 |
+
"""
|
| 227 |
+
H, W = frame.shape[:2]
|
| 228 |
+
mask01 = _to_mask01(mask)
|
| 229 |
+
|
| 230 |
+
try:
|
| 231 |
+
if matanyone is not None:
|
| 232 |
+
import torch
|
| 233 |
+
|
| 234 |
+
img_t = _to_tensor_chw(frame).unsqueeze(0) # (1,3,H,W)
|
| 235 |
+
mask_t = _mask_to_tensor01(mask01) # (1,1,H,W)
|
| 236 |
+
|
| 237 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 238 |
+
img_t = img_t.to(device)
|
| 239 |
+
mask_t = mask_t.to(device)
|
| 240 |
+
|
| 241 |
+
if hasattr(matanyone, "step"):
|
| 242 |
+
with torch.inference_mode():
|
| 243 |
+
out = matanyone.step(
|
| 244 |
+
image_tensor=img_t,
|
| 245 |
+
mask_tensor=mask_t,
|
| 246 |
+
objects=None,
|
| 247 |
+
first_frame_pred=True
|
| 248 |
+
)
|
| 249 |
+
# out should be (1,1,H,W)
|
| 250 |
+
if hasattr(matanyone, "output_prob_to_mask"):
|
| 251 |
+
out = matanyone.output_prob_to_mask(out)
|
| 252 |
+
return _tensor_to_mask01(out)
|
| 253 |
+
|
| 254 |
+
elif hasattr(matanyone, "process"):
|
| 255 |
+
# Generic .process(image, mask) path; accepts numpy/PIL
|
| 256 |
+
refined = matanyone.process(frame, mask01)
|
| 257 |
+
refined = np.asarray(refined).astype(np.float32)
|
| 258 |
+
return _to_mask01(refined)
|
| 259 |
+
|
| 260 |
+
else:
|
| 261 |
+
logger.warning("MatAnyOne provided but no 'step' or 'process' method found.")
|
| 262 |
+
|
| 263 |
+
except Exception as e:
|
| 264 |
+
logger.warning("MatAnyOne refinement failed: %s", e)
|
| 265 |
+
|
| 266 |
+
return _simple_mask_refinement(mask01) if fallback_enabled else mask01
|
| 267 |
|
| 268 |
# ----------------------------------------------------------------------------
|
| 269 |
+
# Compositing
|
| 270 |
+
# ----------------------------------------------------------------------------
|
| 271 |
+
def replace_background_hq(frame: np.ndarray, mask01: np.ndarray, background: np.ndarray, fallback_enabled: bool = True) -> np.ndarray:
|
| 272 |
+
"""
|
| 273 |
+
Composite frame over background using feathered mask.
|
| 274 |
+
Inputs:
|
| 275 |
+
- frame: (H,W,3) uint8 (BGR or RGB, doesn't matter for linear blend)
|
| 276 |
+
- mask01: (H,W) or (H,W,1) float32 in [0..1]
|
| 277 |
+
- background: (H,W,3) uint8
|
| 278 |
+
Returns:
|
| 279 |
+
- composited frame (H,W,3) uint8 (same channel order as inputs)
|
| 280 |
+
"""
|
| 281 |
+
try:
|
| 282 |
+
H, W = frame.shape[:2]
|
| 283 |
+
if background.shape[:2] != (H, W):
|
| 284 |
+
background = cv2.resize(background, (W, H), interpolation=cv2.INTER_LANCZOS4)
|
| 285 |
+
|
| 286 |
+
m = _to_mask01(mask01)
|
| 287 |
+
m = _feather(m, k=2)
|
| 288 |
+
m3 = np.repeat(m[:, :, None], 3, axis=2)
|
| 289 |
+
|
| 290 |
+
comp = frame.astype(np.float32) * m3 + background.astype(np.float32) * (1.0 - m3)
|
| 291 |
+
return np.clip(comp, 0, 255).astype(np.uint8)
|
| 292 |
+
except Exception as e:
|
| 293 |
+
if fallback_enabled:
|
| 294 |
+
logger.warning("Compositing failed (%s) β returning original frame", e)
|
| 295 |
+
return frame
|
| 296 |
+
raise
|
| 297 |
+
|
| 298 |
+
# ----------------------------------------------------------------------------
|
| 299 |
+
# Video validation (detailed)
|
| 300 |
# ----------------------------------------------------------------------------
|
| 301 |
def validate_video_file(video_path: str) -> Tuple[bool, str]:
|
| 302 |
"""
|
|
|
|
| 338 |
|
| 339 |
except Exception as e:
|
| 340 |
logger.error(f"validate_video_file: {e}")
|
| 341 |
+
return False, f"Validation error: {e}"
|
| 342 |
+
|
| 343 |
+
# ----------------------------------------------------------------------------
|
| 344 |
+
# Public symbols
|
| 345 |
+
# ----------------------------------------------------------------------------
|
| 346 |
+
__all__ = [
|
| 347 |
+
"segment_person_hq",
|
| 348 |
+
"segment_person_hq_original",
|
| 349 |
+
"refine_mask_hq",
|
| 350 |
+
"replace_background_hq",
|
| 351 |
+
"create_professional_background",
|
| 352 |
+
"validate_video_file",
|
| 353 |
+
]
|