import os import cv2 import random import numpy as np import torch import torchvision IMAGE_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.JPG', '.JPEG', '.PNG') VIDEO_EXTENSIONS = ('.mp4', '.mov', '.avi', '.MP4', '.MOV', '.AVI') def read_frame_from_videos(frame_root): if frame_root.endswith(VIDEO_EXTENSIONS): # Video file path video_name = os.path.basename(frame_root)[:-4] frames, _, info = torchvision.io.read_video(filename=frame_root, pts_unit='sec', output_format='TCHW') # RGB fps = info['video_fps'] else: video_name = os.path.basename(frame_root) frames = [] fr_lst = sorted(os.listdir(frame_root)) for fr in fr_lst: frame = cv2.imread(os.path.join(frame_root, fr))[...,[2,1,0]] # RGB, HWC frames.append(frame) fps = 24 # default frames = torch.Tensor(np.array(frames)).permute(0, 3, 1, 2).contiguous() # TCHW length = frames.shape[0] return frames, fps, length, video_name def get_video_paths(input_root): video_paths = [] for root, _, files in os.walk(input_root): for file in files: if file.lower().endswith(VIDEO_EXTENSIONS): video_paths.append(os.path.join(root, file)) return sorted(video_paths) def str_to_list(value): return list(map(int, value.split(','))) def gen_dilate(alpha, min_kernel_size, max_kernel_size): kernel_size = random.randint(min_kernel_size, max_kernel_size) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size,kernel_size)) fg_and_unknown = np.array(np.not_equal(alpha, 0).astype(np.float32)) dilate = cv2.dilate(fg_and_unknown, kernel, iterations=1)*255 return dilate.astype(np.float32) def gen_erosion(alpha, min_kernel_size, max_kernel_size): kernel_size = random.randint(min_kernel_size, max_kernel_size) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size,kernel_size)) fg = np.array(np.equal(alpha, 255).astype(np.float32)) erode = cv2.erode(fg, kernel, iterations=1)*255 return erode.astype(np.float32)