from __future__ import annotations from pathlib import Path from typing import List, Tuple import time, random import numpy as np from PIL import Image, ImageFilter, ImageOps TMP_DIR = Path("/tmp/bgfx"); TMP_DIR.mkdir(parents=True, exist_ok=True) _PALETTES = { "office": [(240,245,250),(210,220,230),(180,190,200)], "studio": [(18,18,20),(32,32,36),(58,60,64)], "sunset": [(255,183,77),(255,138,101),(244,143,177)], "forest": [(46,125,50),(102,187,106),(165,214,167)], "ocean": [(33,150,243),(3,169,244),(0,188,212)], "minimal": [(245,246,248),(230,232,236),(214,218,224)], "warm": [(255,224,178),(255,204,128),(255,171,145)], "cool": [(197,202,233),(179,229,252),(178,235,242)], "royal": [(63,81,181),(121,134,203),(159,168,218)], } def _save_pil(img: Image.Image, stem: str = "ai_bg", ext: str = "png") -> str: ts = int(time.time() * 1000) p = TMP_DIR / f"{stem}_{ts}.{ext}" img.save(p) return str(p) def _palette_from_prompt(prompt: str) -> List[tuple]: p = (prompt or "").lower() for key, pal in _PALETTES.items(): if key in p: return pal random.seed(hash(p) % (2**32 - 1)) return [tuple(random.randint(90, 200) for _ in range(3)) for _ in range(3)] def _perlin_like_noise(h: int, w: int, octaves: int = 4) -> np.ndarray: acc = np.zeros((h, w), dtype=np.float32) for o in range(octaves): scale = 2 ** o small = np.random.rand(h // scale + 1, w // scale + 1).astype(np.float32) small = Image.fromarray((small * 255).astype(np.uint8)).resize((w, h), Image.BILINEAR) acc += np.array(small, dtype=np.float32) / 255.0 / (o + 1) acc /= max(1e-6, acc.max()) return acc def _blend_palette(noise: np.ndarray, palette: List[tuple]) -> Image.Image: h, w = noise.shape img = np.zeros((h, w, 3), dtype=np.float32) t1, t2 = 0.33, 0.66 c0, c1, c2 = [np.array(c, dtype=np.float32) for c in palette] m0, m1, m2 = noise < t1, (noise >= t1) & (noise < t2), noise >= t2 img[m0], img[m1], img[m2] = c0, c1, c2 return Image.fromarray(np.clip(img, 0, 255).astype(np.uint8)) def generate_ai_background( prompt: str, width: int = 1280, height: int = 720, bokeh: float = 0.0, vignette: float = 0.15, contrast: float = 1.05 ) -> Tuple[Image.Image, str]: palette = _palette_from_prompt(prompt) noise = _perlin_like_noise(height, width, octaves=4) img = _blend_palette(noise, palette) if bokeh > 0: img = img.filter(ImageFilter.GaussianBlur(radius=max(0, min(50, bokeh)))) if vignette > 0: import numpy as np base = np.array(img).astype(np.float32) / 255.0 y, x = np.ogrid[:height, :width] cx, cy = width / 2, height / 2 r = np.sqrt((x - cx) ** 2 + (y - cy) ** 2) mask = 1 - np.clip(r / (max(width, height) / 1.2), 0, 1) mask = (mask ** 2) * (1 - vignette) + vignette out = base * mask[..., None] img = Image.fromarray(np.clip(out * 255, 0, 255).astype(np.uint8)) if contrast != 1.0: img = ImageOps.autocontrast(img, cutoff=1) arr = np.array(img).astype(np.float32) mean = arr.mean(axis=(0, 1), keepdims=True) arr = (arr - mean) * float(contrast) + mean img = Image.fromarray(np.clip(arr, 0, 255).astype(np.uint8)) path = _save_pil(img) return img, path