File size: 6,346 Bytes
edcc2a9
 
1b02f29
 
 
edcc2a9
1b02f29
 
 
edcc2a9
 
 
 
7b15789
 
ec9c685
e28c939
edcc2a9
1b02f29
b19f757
edcc2a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1ce2f3
edcc2a9
 
 
 
f1ce2f3
edcc2a9
 
 
 
1b02f29
edcc2a9
 
 
1b02f29
edcc2a9
 
 
 
 
 
 
 
 
 
1b02f29
edcc2a9
 
1b02f29
ca4c6b8
edcc2a9
1b02f29
 
 
26e1fd7
edcc2a9
5dad5f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1745437
 
 
 
 
 
1221be6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca4c6b8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import spaces
import logging
import os
from datetime import datetime

import gradio as gr
import soundfile as sf
import torch
from huggingface_hub import snapshot_download

from SparkTTS import SparkTTS
from sparktts.utils.token_parser import LEVELS_MAP_UI

download_path = snapshot_download("MrEzzat/Spark_TTS_Arabic")
print(f"Model downloaded to: {download_path}")
model = SparkTTS(download_path, device="cuda:0" if torch.cuda.is_available() else "cpu")
print(model)


@spaces.GPU()
def run_tts(
    text,
    prompt_text=None,
    prompt_speech=None,
    gender=None,
    pitch=None,
    speed=None,
    save_dir="example/results",
):
    """Perform TTS inference and save the generated audio."""
    logging.info(f"Saving audio to: {save_dir}")

    if prompt_text is not None:
        prompt_text = None if len(prompt_text) <= 1 else prompt_text

    # Ensure the save directory exists
    os.makedirs(save_dir, exist_ok=True)

    # Generate unique filename using timestamp
    timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
    save_path = os.path.join(save_dir, f"{timestamp}.wav")

    logging.info("Starting inference...")

    # Perform inference and save the output audio
    with torch.no_grad():
        wav = model.inference(
            text,
            prompt_speech,
            prompt_text,
            gender,
            pitch,
            speed,
        )

        sf.write(save_path, wav, samplerate=16000)

    logging.info(f"Audio saved at: {save_path}")

    return save_path


# Define callback function for voice cloning
def voice_clone(text, prompt_text, prompt_speech):
    """
    Gradio callback to clone voice using text and optional prompt speech.
    - text: The input text to be synthesised.
    - prompt_text: Additional textual info for the prompt (optional).
    - prompt_speech: Audio files used as reference.
    """
    prompt_text_clean = None if len(prompt_text) < 2 else prompt_text

    audio_output_path = run_tts(
        text, prompt_text=prompt_text_clean, prompt_speech=prompt_speech
    )
    return audio_output_path


# Define callback function for creating new voices
def voice_creation(text, gender, pitch, speed):
    """
    Gradio callback to create a synthetic voice with adjustable parameters.
    - text: The input text for synthesis.
    - gender: 'male' or 'female'.
    - pitch/speed: Ranges mapped by LEVELS_MAP_UI.
    """
    pitch_val = LEVELS_MAP_UI[int(pitch)]
    speed_val = LEVELS_MAP_UI[int(speed)]
    audio_output_path = run_tts(text, gender=gender, pitch=pitch_val, speed=speed_val)
    return audio_output_path


with gr.Blocks() as app:
    # Use HTML for centered title
    gr.HTML(
        '<h1 style="text-align: center;">Arabic Spark-TTS by <a href="https://huggingface.co/MrEzzat/Spark_TTS_Arabic">MrEzzat</a></h1>'
    )

    with gr.Tabs():
        # Voice Creation Tab
        with gr.TabItem("Voice Creation"):
            gr.Markdown("### Create your own voice based on the following parameters")

            with gr.Row():
                with gr.Column():
                    gender = gr.Radio(
                        choices=["male", "female"], value="male", label="Gender"
                    )
                    pitch = gr.Slider(
                        minimum=1, maximum=5, step=1, value=3, label="Pitch"
                    )
                    speed = gr.Slider(
                        minimum=1, maximum=5, step=1, value=3, label="Speed"
                    )
                with gr.Column():
                    text_input_creation = gr.Textbox(
                        label="Input Text",
                        lines=3,
                        placeholder="ุฃูƒุชุจ ู‡ู†ุง ุงู„ู†ุต ุงู„ุฐูŠ ุชุฑูŠุฏ ุชุญูˆูŠู„ู‡ ุฅู„ู‰ ูƒู„ุงู….",
                        value="ูŠู…ูƒู†ูƒ ุฅู†ุดุงุก ุตูˆุช ู…ุฎุตุต ุนู† ุทุฑูŠู‚ ุถุจุท ู…ุนู„ู…ุงุช ู…ุซู„ ุงู„ู†ุบู…ุฉ ูˆุงู„ุณุฑุนุฉ.",
                        text_align="right",
                        rtl=True,
                    )
                    create_button = gr.Button("Create Voice", variant="primary")

            audio_output = gr.Audio(
                label="Generated Audio", autoplay=True, streaming=True
            )

            create_button.click(
                voice_creation,
                inputs=[text_input_creation, gender, pitch, speed],
                outputs=[audio_output],
            )
        # Voice Clone Tab
        with gr.TabItem("Voice Clone"):
            gr.Markdown(
                "## Write the text you want to synthesize on the right and upload or record a prompt audio on the left (leave the text of the prompt speech empty if you are getting errors in generation)."
            )

            with gr.Row(equal_height=False):
                with gr.Column():
                    prompt_wav = gr.Audio(
                        type="filepath",
                        label="Upload a prompt audio file, or record one using the microphone.",
                    )
                    prompt_text_input = gr.Textbox(
                        label="Text of prompt speech (Optional; recommended for cloning in the same language.)",
                        lines=3,
                        placeholder="ุฃูƒุชุจ ู‡ู†ุง ู†ุต ุงู„ูƒู„ุงู… ููŠ ุงู„ู…ู„ู ุงู„ุตูˆุชูŠ ุงู„ู…ุฑูู‚.",
                        text_align="right",
                        rtl=True,
                    )
                with gr.Column():
                    text_input = gr.Textbox(
                        label="Text to synthesize",
                        lines=10,
                        value="ุงู„ุณู„ุงู… ุนู„ูŠูƒู… ูˆุฑุญู…ุฉ ุงู„ู„ู‡",
                        placeholder="ุฃูƒุชุจ ู‡ู†ุง ุงู„ู†ุต ุงู„ุฐูŠ ุชุฑูŠุฏ ุชุญูˆูŠู„ู‡ ุฅู„ู‰ ูƒู„ุงู….",
                        text_align="right",
                        rtl=True,
                    )
                    generate_button_clone = gr.Button("Generate", variant="primary")

            audio_output = gr.Audio(
                label="Generated Audio", autoplay=True, streaming=True
            )

            generate_button_clone.click(
                voice_clone,
                inputs=[
                    text_input,
                    prompt_text_input,
                    prompt_wav,
                ],
                outputs=[audio_output],
            )

app.queue().launch()