Spaces:
Running
Running
| import os | |
| import torch | |
| import torchvision.transforms as transforms | |
| from torchvision import models | |
| from PIL import Image | |
| # Load class names dynamically | |
| dataset_path = "categorized_images" | |
| class_names = sorted(os.listdir(dataset_path)) # Get categories from folder names | |
| num_classes = len(class_names) | |
| # Load trained model | |
| model = models.mobilenet_v2(weights=models.MobileNet_V2_Weights.IMAGENET1K_V1) | |
| model.classifier[1] = torch.nn.Linear(1280, num_classes) | |
| model.load_state_dict(torch.load("custom_image_model.pth", map_location=torch.device("cpu"))) | |
| model.eval() | |
| # Define image transformations | |
| transform = transforms.Compose([ | |
| transforms.Resize((224, 224)), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
| ]) | |
| def predict_category(image_path): | |
| """Predicts the category of a single image.""" | |
| image = Image.open(image_path).convert("RGB") | |
| image = transform(image).unsqueeze(0) | |
| with torch.no_grad(): | |
| output = model(image) | |
| probabilities = torch.nn.functional.softmax(output, dim=1) | |
| predicted_index = torch.argmax(probabilities, dim=1).item() | |
| return class_names[predicted_index] | |
| def categorize_images(image_folder="uncategorized_images", output_folder="categorized_images"): | |
| """Categorizes all images in a folder.""" | |
| if not os.path.exists(image_folder): | |
| print("β Image folder not found!") | |
| return | |
| for img_name in os.listdir(image_folder): | |
| img_path = os.path.join(image_folder, img_name) | |
| if not os.path.isfile(img_path): | |
| continue | |
| category = predict_category(img_path) | |
| category_folder = os.path.join(output_folder, category) | |
| os.makedirs(category_folder, exist_ok=True) | |
| new_path = os.path.join(category_folder, img_name) | |
| os.rename(img_path, new_path) | |
| print(f"β Moved {img_name} to {category}/") | |
| if __name__ == "__main__": | |
| categorize_images() | |
| print("β Categorization complete!") | |