Spaces:
Running
Running
| import os | |
| import json | |
| from collections import Counter | |
| from torchvision.datasets import ImageFolder | |
| # Paths | |
| dataset_path = "categorized_images" | |
| domain_config_path = "domain_config.json" | |
| # Load dataset using ImageFolder | |
| dataset = ImageFolder(root=dataset_path) | |
| # Count images in each class | |
| category_counts = Counter() | |
| for class_idx in dataset.targets: | |
| category_counts[dataset.classes[class_idx]] += 1 | |
| # Load domain_config.json | |
| with open(domain_config_path, "r") as f: | |
| domain_config = json.load(f) | |
| # Print dataset classes and domain config keys | |
| print("\n✅ Dataset Classes from ImageFolder:", dataset.classes) | |
| print("\n✅ Categories in domain_config.json:", list(domain_config.keys())) | |
| # Check if classes match | |
| if set(dataset.classes) == set(domain_config.keys()): | |
| print("\n✅ Class labels MATCH between dataset and domain_config.json!") | |
| else: | |
| print("\n⚠️ WARNING: Mismatch between dataset classes and domain_config.json!") | |
| # Print category counts | |
| print("\n📊 Image Count Per Category:") | |
| for category, count in category_counts.items(): | |
| print(f" - {category}: {count} images") | |
| # Check for empty categories | |
| empty_categories = [c for c in dataset.classes if category_counts[c] == 0] | |
| if empty_categories: | |
| print("\n⚠️ WARNING: Some categories have 0 images:", empty_categories) | |
| else: | |
| print("\n✅ All categories have images!") |