Spaces:
Sleeping
Sleeping
| import os | |
| import torch | |
| import torch.nn as nn | |
| from torchvision import transforms | |
| from PIL import Image | |
| import gradio as gr | |
| # -------- CONFIG -------- | |
| checkpoint_path = "age_prediction_model2.pth" # Just the model file name for Hugging Face Spaces | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| print(f"Using device: {device}") | |
| # -------- SIMPLE CNN MODEL -------- | |
| class SimpleCNN(nn.Module): | |
| def __init__(self): | |
| super(SimpleCNN, self).__init__() | |
| self.features = nn.Sequential( | |
| nn.Conv2d(3, 32, kernel_size=3, padding=1), nn.ReLU(), | |
| nn.MaxPool2d(2), # 64x64 | |
| nn.Conv2d(32, 64, kernel_size=3, padding=1), nn.ReLU(), | |
| nn.MaxPool2d(2), # 32x32 | |
| nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.ReLU(), | |
| nn.MaxPool2d(2), # 16x16 | |
| ) | |
| self.classifier = nn.Sequential( | |
| nn.Flatten(), | |
| nn.Linear(128 * 16 * 16, 256), nn.ReLU(), | |
| nn.Linear(256, 1) # Output: age (regression) | |
| ) | |
| def forward(self, x): | |
| x = self.features(x) | |
| x = self.classifier(x) | |
| return x | |
| # -------- LOAD MODEL -------- | |
| model = SimpleCNN().to(device) | |
| # Check if the checkpoint file exists and load | |
| if os.path.exists(checkpoint_path): | |
| model.load_state_dict(torch.load(checkpoint_path, map_location=device)) # Load to the correct device | |
| model.eval() # Set the model to evaluation mode | |
| print(f"Model loaded from {checkpoint_path}") | |
| else: | |
| print(f"Error: Checkpoint file not found at {checkpoint_path}. Please check the path.") | |
| # -------- PREPROCESSING -------- | |
| transform = transforms.Compose([ | |
| transforms.Resize((128, 128)), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) | |
| ]) | |
| def predict_age(image: Image.Image) -> float: | |
| image_tensor = transform(image).unsqueeze(0).to(device) | |
| with torch.no_grad(): | |
| output = model(image_tensor) | |
| age = output.item() | |
| return round(age, 2) | |
| import gradio as gr | |
| gr.Interface( | |
| fn=predict_age, | |
| inputs=gr.Image(type="pil", image_mode="RGB"), | |
| outputs="number", # or "text" if your output is text-based | |
| title="Age Prediction from Face", | |
| description="Upload a face image and get the predicted age." | |
| ).launch() | |