Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,15 @@
|
|
| 1 |
-
import
|
| 2 |
import torch
|
|
|
|
| 3 |
from torch.utils.data import Dataset, DataLoader
|
| 4 |
-
from PIL import Image
|
| 5 |
-
import torchvision
|
| 6 |
from torchvision import transforms
|
|
|
|
| 7 |
import xml.etree.ElementTree as ET
|
| 8 |
import torch.optim as optim
|
| 9 |
-
|
| 10 |
-
import gradio as gr
|
| 11 |
-
|
| 12 |
-
# Ensure device is set to GPU if available
|
| 13 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
|
|
|
|
|
|
|
| 15 |
class FaceMaskDataset(Dataset):
|
| 16 |
def __init__(self, images_dir, annotations_dir, transform=None, resize=(800, 800)):
|
| 17 |
self.images_dir = images_dir
|
|
@@ -26,21 +24,17 @@ class FaceMaskDataset(Dataset):
|
|
| 26 |
def __getitem__(self, idx):
|
| 27 |
image_path = os.path.join(self.images_dir, self.image_files[idx])
|
| 28 |
image = Image.open(image_path).convert("RGB")
|
| 29 |
-
|
| 30 |
-
# Resize the image to a fixed size, while maintaining aspect ratio
|
| 31 |
image = image.resize(self.resize)
|
| 32 |
|
| 33 |
-
# Handle both .jpg and .png files
|
| 34 |
annotation_path = os.path.join(self.annotations_dir, self.image_files[idx].replace(".jpg", ".xml").replace(".png", ".xml"))
|
| 35 |
|
| 36 |
if not os.path.exists(annotation_path):
|
| 37 |
print(f"Warning: Annotation file {annotation_path} does not exist. Skipping image {self.image_files[idx]}.")
|
| 38 |
-
return None, None # Return
|
| 39 |
|
| 40 |
boxes, labels = self.load_annotations(annotation_path)
|
| 41 |
-
|
| 42 |
if boxes is None or labels is None:
|
| 43 |
-
return None, None # Skip
|
| 44 |
|
| 45 |
target = {'boxes': boxes, 'labels': labels}
|
| 46 |
|
|
@@ -63,66 +57,119 @@ class FaceMaskDataset(Dataset):
|
|
| 63 |
xmax = float(bndbox.find('xmax').text)
|
| 64 |
ymax = float(bndbox.find('ymax').text)
|
| 65 |
boxes.append([xmin, ymin, xmax, ymax])
|
| 66 |
-
labels.append(1 if label == "mask" else 0) #
|
| 67 |
|
| 68 |
if len(boxes) == 0 or len(labels) == 0:
|
| 69 |
-
return None, None # If no boxes or labels
|
| 70 |
|
| 71 |
boxes = torch.as_tensor(boxes, dtype=torch.float32)
|
| 72 |
labels = torch.tensor(labels, dtype=torch.int64)
|
| 73 |
|
| 74 |
return boxes, labels
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
#
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
batch = [item for item in batch if item[0] is not None and item[1] is not None]
|
| 81 |
-
return tuple(zip(*batch))
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
|
| 86 |
-
# Assuming 2 classes: mask and no_mask
|
| 87 |
-
num_classes = 2
|
| 88 |
-
in_features = model.roi_heads.box_predictor.cls_score.in_features
|
| 89 |
-
model.roi_heads.box_predictor = torchvision.models.detection.faster_rcnn.FastRCNNPredictor(in_features, num_classes)
|
| 90 |
-
model.to(device)
|
| 91 |
-
return model
|
| 92 |
|
| 93 |
-
#
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
transform = transforms.Compose([
|
| 100 |
-
transforms.Resize((224, 224)), # Resize all images to 224x224
|
| 101 |
-
transforms.ToTensor(),
|
| 102 |
-
])
|
| 103 |
|
| 104 |
-
|
| 105 |
-
image = transform(image).unsqueeze(0).to(device) # Add batch dimension
|
| 106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
with torch.no_grad():
|
| 108 |
-
|
|
|
|
|
|
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
|
| 114 |
-
|
| 115 |
|
| 116 |
-
#
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
-
#
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
-
#
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
# Launch Gradio interface
|
| 128 |
iface.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
import os
|
| 4 |
from torch.utils.data import Dataset, DataLoader
|
|
|
|
|
|
|
| 5 |
from torchvision import transforms
|
| 6 |
+
from PIL import Image
|
| 7 |
import xml.etree.ElementTree as ET
|
| 8 |
import torch.optim as optim
|
| 9 |
+
from torch import nn
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Your model training and evaluation functions (already defined in your previous code)
|
| 12 |
+
# Define the custom dataset
|
| 13 |
class FaceMaskDataset(Dataset):
|
| 14 |
def __init__(self, images_dir, annotations_dir, transform=None, resize=(800, 800)):
|
| 15 |
self.images_dir = images_dir
|
|
|
|
| 24 |
def __getitem__(self, idx):
|
| 25 |
image_path = os.path.join(self.images_dir, self.image_files[idx])
|
| 26 |
image = Image.open(image_path).convert("RGB")
|
|
|
|
|
|
|
| 27 |
image = image.resize(self.resize)
|
| 28 |
|
|
|
|
| 29 |
annotation_path = os.path.join(self.annotations_dir, self.image_files[idx].replace(".jpg", ".xml").replace(".png", ".xml"))
|
| 30 |
|
| 31 |
if not os.path.exists(annotation_path):
|
| 32 |
print(f"Warning: Annotation file {annotation_path} does not exist. Skipping image {self.image_files[idx]}.")
|
| 33 |
+
return None, None # Return None if annotation is missing
|
| 34 |
|
| 35 |
boxes, labels = self.load_annotations(annotation_path)
|
|
|
|
| 36 |
if boxes is None or labels is None:
|
| 37 |
+
return None, None # Skip if annotations are invalid
|
| 38 |
|
| 39 |
target = {'boxes': boxes, 'labels': labels}
|
| 40 |
|
|
|
|
| 57 |
xmax = float(bndbox.find('xmax').text)
|
| 58 |
ymax = float(bndbox.find('ymax').text)
|
| 59 |
boxes.append([xmin, ymin, xmax, ymax])
|
| 60 |
+
labels.append(1 if label == "mask" else 0) # "mask" = 1, "no_mask" = 0
|
| 61 |
|
| 62 |
if len(boxes) == 0 or len(labels) == 0:
|
| 63 |
+
return None, None # If no boxes or labels, return None
|
| 64 |
|
| 65 |
boxes = torch.as_tensor(boxes, dtype=torch.float32)
|
| 66 |
labels = torch.tensor(labels, dtype=torch.int64)
|
| 67 |
|
| 68 |
return boxes, labels
|
| 69 |
|
| 70 |
+
# Model Training Loop (referred to from previous code)
|
| 71 |
+
def train_model(model, train_loader, val_loader, optimizer, num_epochs=10):
|
| 72 |
+
for epoch in range(num_epochs):
|
| 73 |
+
# Training loop
|
| 74 |
+
running_loss = 0.0
|
| 75 |
+
model.train()
|
| 76 |
+
for images, targets in train_loader:
|
| 77 |
+
if images is None or targets is None:
|
| 78 |
+
continue # Skip invalid images/annotations
|
| 79 |
|
| 80 |
+
# Move data to device
|
| 81 |
+
images = [image.to(device) for image in images]
|
| 82 |
+
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
optimizer.zero_grad()
|
| 85 |
+
loss_dict = model(images, targets)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
# Calculate total loss
|
| 88 |
+
total_loss = sum(loss for loss in loss_dict.values())
|
| 89 |
+
total_loss.backward()
|
| 90 |
+
optimizer.step()
|
| 91 |
+
|
| 92 |
+
running_loss += total_loss.item()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {running_loss / len(train_loader)}")
|
|
|
|
| 95 |
|
| 96 |
+
# Evaluate after every epoch
|
| 97 |
+
val_loss = evaluate_model(model, val_loader)
|
| 98 |
+
print(f"Validation Loss: {val_loss}")
|
| 99 |
+
|
| 100 |
+
# Validation function
|
| 101 |
+
def evaluate_model(model, val_loader):
|
| 102 |
+
model.eval()
|
| 103 |
+
running_loss = 0.0
|
| 104 |
with torch.no_grad():
|
| 105 |
+
for images, targets in val_loader:
|
| 106 |
+
if images is None or targets is None:
|
| 107 |
+
continue # Skip invalid data
|
| 108 |
|
| 109 |
+
# Move data to device
|
| 110 |
+
images = [image.to(device) for image in images]
|
| 111 |
+
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
|
| 112 |
|
| 113 |
+
loss_dict = model(images, targets)
|
| 114 |
|
| 115 |
+
# Calculate total loss
|
| 116 |
+
total_loss = sum(loss for loss in loss_dict.values())
|
| 117 |
+
running_loss += total_loss.item()
|
| 118 |
+
|
| 119 |
+
return running_loss / len(val_loader)
|
| 120 |
+
|
| 121 |
+
# Function to upload dataset and start training
|
| 122 |
+
def train_on_uploaded_data(train_data, val_data):
|
| 123 |
+
# Save the uploaded dataset (files)
|
| 124 |
+
train_data_path = "train_data.zip"
|
| 125 |
+
val_data_path = "val_data.zip"
|
| 126 |
|
| 127 |
+
# Unzip and prepare directories (assuming you upload zip files for simplicity)
|
| 128 |
+
with open(train_data.name, 'wb') as f:
|
| 129 |
+
f.write(train_data.read())
|
| 130 |
+
with open(val_data.name, 'wb') as f:
|
| 131 |
+
f.write(val_data.read())
|
| 132 |
+
|
| 133 |
+
# Extract zip files
|
| 134 |
+
os.system(f"unzip {train_data_path} -d ./train/")
|
| 135 |
+
os.system(f"unzip {val_data_path} -d ./val/")
|
| 136 |
+
|
| 137 |
+
# Load datasets
|
| 138 |
+
train_dataset = FaceMaskDataset(
|
| 139 |
+
images_dir="train/images",
|
| 140 |
+
annotations_dir="train/annotations",
|
| 141 |
+
transform=transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor()])
|
| 142 |
+
)
|
| 143 |
+
val_dataset = FaceMaskDataset(
|
| 144 |
+
images_dir="val/images",
|
| 145 |
+
annotations_dir="val/annotations",
|
| 146 |
+
transform=transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor()])
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
# Dataloaders
|
| 150 |
+
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, collate_fn=collate_fn)
|
| 151 |
+
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, collate_fn=collate_fn)
|
| 152 |
|
| 153 |
+
# Train the model
|
| 154 |
+
model = get_model(num_classes=2) # Assuming you have a model function
|
| 155 |
+
model.to(device)
|
| 156 |
+
optimizer = optim.SGD(model.parameters(), lr=0.005, momentum=0.9, weight_decay=0.0005)
|
| 157 |
+
|
| 158 |
+
# Train the model and return feedback
|
| 159 |
+
train_model(model, train_loader, val_loader, optimizer, num_epochs=10)
|
| 160 |
+
|
| 161 |
+
return "Training completed and model saved."
|
| 162 |
+
|
| 163 |
+
# Create Gradio Interface
|
| 164 |
+
iface = gr.Interface(
|
| 165 |
+
fn=train_on_uploaded_data,
|
| 166 |
+
inputs=[
|
| 167 |
+
gr.File(label="Upload Train Dataset (ZIP)"),
|
| 168 |
+
gr.File(label="Upload Validation Dataset (ZIP)")
|
| 169 |
+
],
|
| 170 |
+
outputs=gr.Textbox(label="Training Status"),
|
| 171 |
+
live=True
|
| 172 |
+
)
|
| 173 |
|
| 174 |
# Launch Gradio interface
|
| 175 |
iface.launch()
|