Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,157 +1,124 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
import os
|
| 4 |
-
from torch.utils.data import Dataset, DataLoader
|
| 5 |
-
from torchvision import transforms
|
| 6 |
-
from PIL import Image
|
| 7 |
-
import xml.etree.ElementTree as ET
|
| 8 |
-
import torch.optim as optim
|
| 9 |
import zipfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
#
|
| 12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
# Custom Dataset
|
| 15 |
class FaceMaskDataset(Dataset):
|
| 16 |
-
def __init__(self,
|
| 17 |
-
self.
|
| 18 |
-
self.
|
| 19 |
self.transform = transform
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
def __len__(self):
|
| 24 |
-
return len(self.
|
| 25 |
|
| 26 |
def __getitem__(self, idx):
|
| 27 |
-
|
| 28 |
-
image = Image.open(image_path).convert("RGB")
|
| 29 |
-
image = image.resize(self.resize)
|
| 30 |
-
|
| 31 |
-
annotation_path = os.path.join(
|
| 32 |
-
self.annotations_dir,
|
| 33 |
-
self.image_files[idx].replace(".jpg", ".xml").replace(".png", ".xml")
|
| 34 |
-
)
|
| 35 |
-
if not os.path.exists(annotation_path):
|
| 36 |
-
print(f"Warning: Annotation file {annotation_path} not found.")
|
| 37 |
-
return None, None
|
| 38 |
-
|
| 39 |
-
boxes, labels = self.load_annotations(annotation_path)
|
| 40 |
-
if boxes is None or labels is None:
|
| 41 |
-
return None, None
|
| 42 |
-
|
| 43 |
-
target = {'boxes': boxes, 'labels': labels}
|
| 44 |
if self.transform:
|
| 45 |
image = self.transform(image)
|
|
|
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
root = tree.getroot()
|
| 52 |
-
|
| 53 |
-
boxes = []
|
| 54 |
-
labels = []
|
| 55 |
-
for obj in root.iter('object'):
|
| 56 |
-
label = obj.find('name').text
|
| 57 |
-
bndbox = obj.find('bndbox')
|
| 58 |
-
xmin = float(bndbox.find('xmin').text)
|
| 59 |
-
ymin = float(bndbox.find('ymin').text)
|
| 60 |
-
xmax = float(bndbox.find('xmax').text)
|
| 61 |
-
ymax = float(bndbox.find('ymax').text)
|
| 62 |
-
boxes.append([xmin, ymin, xmax, ymax])
|
| 63 |
-
labels.append(1 if label == "mask" else 0)
|
| 64 |
-
|
| 65 |
-
if not boxes or not labels:
|
| 66 |
-
return None, None
|
| 67 |
-
|
| 68 |
-
return torch.as_tensor(boxes, dtype=torch.float32), torch.tensor(labels, dtype=torch.int64)
|
| 69 |
-
|
| 70 |
-
# Placeholder collate function
|
| 71 |
-
def collate_fn(batch):
|
| 72 |
-
batch = list(filter(lambda x: x[0] is not None, batch))
|
| 73 |
-
images, targets = zip(*batch)
|
| 74 |
-
return images, targets
|
| 75 |
-
|
| 76 |
-
# Dummy get_model function (replace with real model)
|
| 77 |
-
def get_model(num_classes):
|
| 78 |
-
import torchvision
|
| 79 |
-
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
|
| 80 |
-
in_features = model.roi_heads.box_predictor.cls_score.in_features
|
| 81 |
-
model.roi_heads.box_predictor = torchvision.models.detection.faster_rcnn.FastRCNNPredictor(in_features, num_classes)
|
| 82 |
-
return model
|
| 83 |
-
|
| 84 |
-
# Validation Function
|
| 85 |
-
def evaluate_model(model, val_loader):
|
| 86 |
-
model.eval()
|
| 87 |
-
running_loss = 0.0
|
| 88 |
-
with torch.no_grad():
|
| 89 |
-
for images, targets in val_loader:
|
| 90 |
-
if images is None or targets is None:
|
| 91 |
-
continue
|
| 92 |
-
images = [img.to(device) for img in images]
|
| 93 |
-
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
|
| 94 |
-
loss_dict = model(images, targets)
|
| 95 |
-
total_loss = sum(loss for loss in loss_dict.values())
|
| 96 |
-
running_loss += total_loss.item()
|
| 97 |
-
return running_loss / len(val_loader)
|
| 98 |
-
|
| 99 |
-
# Training Function
|
| 100 |
-
def train_model(model, train_loader, val_loader, optimizer, num_epochs=10):
|
| 101 |
-
for epoch in range(num_epochs):
|
| 102 |
-
running_loss = 0.0
|
| 103 |
-
model.train()
|
| 104 |
-
for images, targets in train_loader:
|
| 105 |
-
if images is None or targets is None:
|
| 106 |
-
continue
|
| 107 |
-
images = [img.to(device) for img in images]
|
| 108 |
-
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
|
| 109 |
-
optimizer.zero_grad()
|
| 110 |
-
loss_dict = model(images, targets)
|
| 111 |
-
total_loss = sum(loss for loss in loss_dict.values())
|
| 112 |
-
total_loss.backward()
|
| 113 |
-
optimizer.step()
|
| 114 |
-
running_loss += total_loss.item()
|
| 115 |
-
|
| 116 |
-
print(f"[Epoch {epoch+1}] Train Loss: {running_loss / len(train_loader):.4f}")
|
| 117 |
-
val_loss = evaluate_model(model, val_loader)
|
| 118 |
-
print(f"[Epoch {epoch+1}] Validation Loss: {val_loss:.4f}")
|
| 119 |
-
|
| 120 |
-
torch.save(model.state_dict(), "facemask_detector.pth")
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
|
| 127 |
-
|
| 128 |
-
return "❌ 'train.zip' or 'val.zip' not found in the Files section."
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
zip_ref.extractall(folder)
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
val_dataset = FaceMaskDataset("val/images", "val/annotations", transform=transform)
|
| 138 |
|
| 139 |
-
|
| 140 |
-
val_loader = DataLoader(val_dataset, batch_size=4, shuffle=False, collate_fn=collate_fn)
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
-
|
| 147 |
-
return "✅ Training complete. Model saved as 'facemask_detector.pth'."
|
| 148 |
|
| 149 |
-
# Gradio UI
|
| 150 |
iface = gr.Interface(
|
| 151 |
-
fn=
|
| 152 |
-
inputs=
|
| 153 |
-
outputs=gr.
|
| 154 |
-
|
|
|
|
|
|
|
| 155 |
)
|
| 156 |
|
| 157 |
iface.launch()
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import zipfile
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from torchvision import transforms, models
|
| 7 |
+
from torch.utils.data import Dataset, DataLoader
|
| 8 |
+
import gradio as gr
|
| 9 |
|
| 10 |
+
# ----------- SETUP -----------
|
| 11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
print("Using device:", device)
|
| 13 |
+
|
| 14 |
+
# ----------- UNZIP DATA -----------
|
| 15 |
+
|
| 16 |
+
def unzip_file(zip_path, extract_to):
|
| 17 |
+
if not os.path.exists(extract_to):
|
| 18 |
+
os.makedirs(extract_to)
|
| 19 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
| 20 |
+
zip_ref.extractall(extract_to)
|
| 21 |
+
print(f"Extracted {zip_path} to {extract_to}")
|
| 22 |
+
|
| 23 |
+
unzip_file("train.zip", "./data/train")
|
| 24 |
+
unzip_file("val.zip", "./data/val")
|
| 25 |
+
|
| 26 |
+
# ----------- DATASET -----------
|
| 27 |
|
|
|
|
| 28 |
class FaceMaskDataset(Dataset):
|
| 29 |
+
def __init__(self, root_dir, transform=None):
|
| 30 |
+
self.image_paths = []
|
| 31 |
+
self.labels = []
|
| 32 |
self.transform = transform
|
| 33 |
+
for label_name in ['mask', 'no_mask']:
|
| 34 |
+
class_path = os.path.join(root_dir, label_name)
|
| 35 |
+
for img_name in os.listdir(class_path):
|
| 36 |
+
if img_name.endswith(".jpg") or img_name.endswith(".png"):
|
| 37 |
+
self.image_paths.append(os.path.join(class_path, img_name))
|
| 38 |
+
self.labels.append(0 if label_name == 'mask' else 1)
|
| 39 |
|
| 40 |
def __len__(self):
|
| 41 |
+
return len(self.image_paths)
|
| 42 |
|
| 43 |
def __getitem__(self, idx):
|
| 44 |
+
image = Image.open(self.image_paths[idx]).convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
if self.transform:
|
| 46 |
image = self.transform(image)
|
| 47 |
+
return image, self.labels[idx]
|
| 48 |
|
| 49 |
+
transform = transforms.Compose([
|
| 50 |
+
transforms.Resize((224, 224)),
|
| 51 |
+
transforms.ToTensor(),
|
| 52 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
train_dataset = FaceMaskDataset("./data/train", transform)
|
| 55 |
+
val_dataset = FaceMaskDataset("./data/val", transform)
|
| 56 |
+
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
|
| 57 |
+
val_loader = DataLoader(val_dataset, batch_size=16)
|
| 58 |
|
| 59 |
+
# ----------- MODEL -----------
|
|
|
|
| 60 |
|
| 61 |
+
model = models.mobilenet_v2(pretrained=True)
|
| 62 |
+
model.classifier[1] = nn.Linear(model.last_channel, 2)
|
| 63 |
+
model = model.to(device)
|
|
|
|
| 64 |
|
| 65 |
+
criterion = nn.CrossEntropyLoss()
|
| 66 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
|
|
|
| 67 |
|
| 68 |
+
# ----------- TRAINING -----------
|
|
|
|
| 69 |
|
| 70 |
+
def train_model(model, epochs=2): # keep epochs small for HF Spaces
|
| 71 |
+
for epoch in range(epochs):
|
| 72 |
+
model.train()
|
| 73 |
+
running_loss = 0.0
|
| 74 |
+
for imgs, labels in train_loader:
|
| 75 |
+
imgs, labels = imgs.to(device), labels.to(device)
|
| 76 |
+
optimizer.zero_grad()
|
| 77 |
+
outputs = model(imgs)
|
| 78 |
+
loss = criterion(outputs, labels)
|
| 79 |
+
loss.backward()
|
| 80 |
+
optimizer.step()
|
| 81 |
+
running_loss += loss.item()
|
| 82 |
+
|
| 83 |
+
print(f"Epoch {epoch+1}, Loss: {running_loss/len(train_loader):.4f}")
|
| 84 |
+
|
| 85 |
+
# Validation Accuracy
|
| 86 |
+
correct = 0
|
| 87 |
+
total = 0
|
| 88 |
+
model.eval()
|
| 89 |
+
with torch.no_grad():
|
| 90 |
+
for imgs, labels in val_loader:
|
| 91 |
+
imgs, labels = imgs.to(device), labels.to(device)
|
| 92 |
+
outputs = model(imgs)
|
| 93 |
+
_, predicted = torch.max(outputs.data, 1)
|
| 94 |
+
total += labels.size(0)
|
| 95 |
+
correct += (predicted == labels).sum().item()
|
| 96 |
+
acc = 100 * correct / total
|
| 97 |
+
print(f"Validation Accuracy: {acc:.2f}%")
|
| 98 |
+
|
| 99 |
+
train_model(model)
|
| 100 |
+
torch.save(model.state_dict(), "face_mask_model.pth")
|
| 101 |
+
|
| 102 |
+
# ----------- INFERENCE -----------
|
| 103 |
+
|
| 104 |
+
def predict(image):
|
| 105 |
+
model.eval()
|
| 106 |
+
img = image.convert("RGB")
|
| 107 |
+
img = transform(img).unsqueeze(0).to(device)
|
| 108 |
+
with torch.no_grad():
|
| 109 |
+
outputs = model(img)
|
| 110 |
+
_, predicted = torch.max(outputs.data, 1)
|
| 111 |
+
return "Mask" if predicted.item() == 0 else "No Mask"
|
| 112 |
|
| 113 |
+
# ----------- GRADIO APP -----------
|
|
|
|
| 114 |
|
|
|
|
| 115 |
iface = gr.Interface(
|
| 116 |
+
fn=predict,
|
| 117 |
+
inputs=gr.Image(source="webcam", tool="editor", type="pil", label="Upload or Webcam"),
|
| 118 |
+
outputs=gr.Label(label="Prediction"),
|
| 119 |
+
live=True,
|
| 120 |
+
title="Face Mask Detection",
|
| 121 |
+
description="Upload or use webcam to detect if a person is wearing a face mask."
|
| 122 |
)
|
| 123 |
|
| 124 |
iface.launch()
|