Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.optim as optim
|
| 5 |
+
from torchvision import transforms, models
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
# Load the pre-trained model (ensure to use the saved model checkpoint)
|
| 12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
+
|
| 14 |
+
# Model: EfficientNet-B0 with dropout added to reduce overfitting
|
| 15 |
+
model = models.efficientnet_b0(pretrained=True)
|
| 16 |
+
model.classifier = nn.Sequential(
|
| 17 |
+
nn.Dropout(0.4),
|
| 18 |
+
nn.Linear(model.classifier[1].in_features, 7) # num_classes = 7 (angry, disgust, fear, happy, neutral, sad, surprise)
|
| 19 |
+
)
|
| 20 |
+
model.load_state_dict(torch.load("D:/Dataset/MMAFEDB/best_mood_classifier.pth"))
|
| 21 |
+
model = model.to(device)
|
| 22 |
+
model.eval()
|
| 23 |
+
|
| 24 |
+
# Define the image transformations for the uploaded image
|
| 25 |
+
transform = transforms.Compose([
|
| 26 |
+
transforms.Resize((224, 224)),
|
| 27 |
+
transforms.ToTensor(),
|
| 28 |
+
transforms.Normalize([0.485, 0.456, 0.406],
|
| 29 |
+
[0.229, 0.224, 0.225])
|
| 30 |
+
])
|
| 31 |
+
|
| 32 |
+
# Class names (same order as in your dataset)
|
| 33 |
+
class_names = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
| 34 |
+
|
| 35 |
+
# Function to predict the mood from the uploaded image
|
| 36 |
+
def predict_mood(image):
|
| 37 |
+
image = Image.fromarray(image)
|
| 38 |
+
image = transform(image).unsqueeze(0).to(device)
|
| 39 |
+
|
| 40 |
+
with torch.no_grad():
|
| 41 |
+
outputs = model(image)
|
| 42 |
+
_, preds = torch.max(outputs, 1)
|
| 43 |
+
predicted_class = class_names[preds.item()]
|
| 44 |
+
|
| 45 |
+
return predicted_class
|
| 46 |
+
|
| 47 |
+
# Gradio interface
|
| 48 |
+
iface = gr.Interface(
|
| 49 |
+
fn=predict_mood,
|
| 50 |
+
inputs=gr.Image(type="numpy"),
|
| 51 |
+
outputs="text",
|
| 52 |
+
live=True,
|
| 53 |
+
title="Mood Classifier",
|
| 54 |
+
description="Upload an image of a face and the model will predict the mood."
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# Launch the app
|
| 58 |
+
iface.launch()
|