Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import joblib
|
| 4 |
+
from pytorch_tabnet.tab_model import TabNetClassifier
|
| 5 |
+
|
| 6 |
+
# Load model and preprocessing tools
|
| 7 |
+
model = TabNetClassifier()
|
| 8 |
+
model.load_model("tabnet_model.zip")
|
| 9 |
+
scaler = joblib.load("scaler.save")
|
| 10 |
+
encoder = joblib.load("encoder.save")
|
| 11 |
+
|
| 12 |
+
# Features used in the model
|
| 13 |
+
features = [f"{trait}{i}" for trait in ["EXT", "EST", "AGR", "CSN", "OPN"] for i in range(1, 11)]
|
| 14 |
+
|
| 15 |
+
def predict_personality(*inputs):
|
| 16 |
+
X = np.array(inputs).reshape(1, -1).astype(np.float32)
|
| 17 |
+
X_scaled = scaler.transform(X)
|
| 18 |
+
y_pred = model.predict(X_scaled)
|
| 19 |
+
label = encoder.inverse_transform(y_pred)[0]
|
| 20 |
+
return f"Predicted Personality Type: {label}"
|
| 21 |
+
|
| 22 |
+
# Create Gradio interface
|
| 23 |
+
inputs = [gr.Slider(1, 5, step=0.1, label=f) for f in features]
|
| 24 |
+
|
| 25 |
+
demo = gr.Interface(
|
| 26 |
+
fn=predict_personality,
|
| 27 |
+
inputs=inputs,
|
| 28 |
+
outputs=gr.Text(label="Personality Prediction"),
|
| 29 |
+
title="Personality Type Classifier (Introvert vs. Extrovert)",
|
| 30 |
+
description="This model predicts if a person is Introvert or Extrovert based on their IPIP-FFM scores."
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
demo.launch()
|