Spaces:
Running
on
Zero
Running
on
Zero
Update rex_omni/wrapper.py
Browse files- rex_omni/wrapper.py +4 -175
rex_omni/wrapper.py
CHANGED
|
@@ -4,194 +4,24 @@
|
|
| 4 |
"""
|
| 5 |
Main wrapper class for Rex Omni
|
| 6 |
"""
|
| 7 |
-
|
| 8 |
-
import base64
|
| 9 |
import json
|
| 10 |
-
import math
|
| 11 |
import time
|
| 12 |
-
from io import BytesIO
|
| 13 |
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 14 |
|
| 15 |
-
import requests
|
| 16 |
import torch
|
| 17 |
from PIL import Image
|
|
|
|
| 18 |
|
| 19 |
from .parser import convert_boxes_to_normalized_bins, parse_prediction
|
| 20 |
from .tasks import TASK_CONFIGS, TaskType, get_keypoint_config, get_task_config
|
| 21 |
|
| 22 |
-
IMAGE_FACTOR = 28
|
| 23 |
-
MIN_PIXELS = 4 * 28 * 28
|
| 24 |
-
MAX_PIXELS = 16384 * 28 * 28
|
| 25 |
-
MAX_RATIO = 200
|
| 26 |
-
|
| 27 |
-
VIDEO_MIN_PIXELS = 128 * 28 * 28
|
| 28 |
-
VIDEO_MAX_PIXELS = 768 * 28 * 28
|
| 29 |
-
FRAME_FACTOR = 2
|
| 30 |
-
FPS = 2.0
|
| 31 |
-
FPS_MIN_FRAMES = 4
|
| 32 |
-
FPS_MAX_FRAMES = 768
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
def round_by_factor(number: int, factor: int) -> int:
|
| 36 |
-
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
| 37 |
-
return round(number / factor) * factor
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
def ceil_by_factor(number: int, factor: int) -> int:
|
| 41 |
-
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
| 42 |
-
return math.ceil(number / factor) * factor
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
def floor_by_factor(number: int, factor: int) -> int:
|
| 46 |
-
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
| 47 |
-
return math.floor(number / factor) * factor
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
def extract_vision_info(conversations: list[dict] | list[list[dict]]) -> list[dict]:
|
| 51 |
-
vision_infos = []
|
| 52 |
-
if isinstance(conversations[0], dict):
|
| 53 |
-
conversations = [conversations]
|
| 54 |
-
for conversation in conversations:
|
| 55 |
-
for message in conversation:
|
| 56 |
-
if isinstance(message["content"], list):
|
| 57 |
-
for ele in message["content"]:
|
| 58 |
-
if (
|
| 59 |
-
"image" in ele
|
| 60 |
-
or "image_url" in ele
|
| 61 |
-
or "video" in ele
|
| 62 |
-
or ele["type"] in ("image", "image_url", "video")
|
| 63 |
-
):
|
| 64 |
-
vision_infos.append(ele)
|
| 65 |
-
return vision_infos
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
def to_rgb(pil_image: Image.Image) -> Image.Image:
|
| 69 |
-
if pil_image.mode == "RGBA":
|
| 70 |
-
white_background = Image.new("RGB", pil_image.size, (255, 255, 255))
|
| 71 |
-
white_background.paste(
|
| 72 |
-
pil_image, mask=pil_image.split()[3]
|
| 73 |
-
) # Use alpha channel as mask
|
| 74 |
-
return white_background
|
| 75 |
-
else:
|
| 76 |
-
return pil_image.convert("RGB")
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
def fetch_image(
|
| 80 |
-
ele: dict[str, str | Image.Image], size_factor: int = IMAGE_FACTOR
|
| 81 |
-
) -> Image.Image:
|
| 82 |
-
if "image" in ele:
|
| 83 |
-
image = ele["image"]
|
| 84 |
-
else:
|
| 85 |
-
image = ele["image_url"]
|
| 86 |
-
image_obj = None
|
| 87 |
-
if isinstance(image, Image.Image):
|
| 88 |
-
image_obj = image
|
| 89 |
-
elif image.startswith("http://") or image.startswith("https://"):
|
| 90 |
-
response = requests.get(image, stream=True)
|
| 91 |
-
image_obj = Image.open(BytesIO(response.content))
|
| 92 |
-
elif image.startswith("file://"):
|
| 93 |
-
image_obj = Image.open(image[7:])
|
| 94 |
-
elif image.startswith("data:image"):
|
| 95 |
-
if "base64," in image:
|
| 96 |
-
_, base64_data = image.split("base64,", 1)
|
| 97 |
-
data = base64.b64decode(base64_data)
|
| 98 |
-
image_obj = Image.open(BytesIO(data))
|
| 99 |
-
else:
|
| 100 |
-
image_obj = Image.open(image)
|
| 101 |
-
if image_obj is None:
|
| 102 |
-
raise ValueError(
|
| 103 |
-
f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}"
|
| 104 |
-
)
|
| 105 |
-
image = to_rgb(image_obj)
|
| 106 |
-
## resize
|
| 107 |
-
if "resized_height" in ele and "resized_width" in ele:
|
| 108 |
-
resized_height, resized_width = smart_resize(
|
| 109 |
-
ele["resized_height"],
|
| 110 |
-
ele["resized_width"],
|
| 111 |
-
factor=size_factor,
|
| 112 |
-
)
|
| 113 |
-
else:
|
| 114 |
-
width, height = image.size
|
| 115 |
-
min_pixels = ele.get("min_pixels", MIN_PIXELS)
|
| 116 |
-
max_pixels = ele.get("max_pixels", MAX_PIXELS)
|
| 117 |
-
resized_height, resized_width = smart_resize(
|
| 118 |
-
height,
|
| 119 |
-
width,
|
| 120 |
-
factor=size_factor,
|
| 121 |
-
min_pixels=min_pixels,
|
| 122 |
-
max_pixels=max_pixels,
|
| 123 |
-
)
|
| 124 |
-
image = image.resize((resized_width, resized_height))
|
| 125 |
-
|
| 126 |
-
return image
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
def process_vision_info(
|
| 130 |
-
conversations: list[dict] | list[list[dict]],
|
| 131 |
-
return_video_kwargs: bool = False,
|
| 132 |
-
) -> tuple[
|
| 133 |
-
list[Image.Image] | None,
|
| 134 |
-
list[torch.Tensor | list[Image.Image]] | None,
|
| 135 |
-
Optional[dict],
|
| 136 |
-
]:
|
| 137 |
-
|
| 138 |
-
vision_infos = extract_vision_info(conversations)
|
| 139 |
-
## Read images or videos
|
| 140 |
-
image_inputs = []
|
| 141 |
-
video_inputs = []
|
| 142 |
-
video_sample_fps_list = []
|
| 143 |
-
for vision_info in vision_infos:
|
| 144 |
-
if "image" in vision_info or "image_url" in vision_info:
|
| 145 |
-
image_inputs.append(fetch_image(vision_info))
|
| 146 |
-
else:
|
| 147 |
-
raise ValueError("image, image_url or video should in content.")
|
| 148 |
-
if len(image_inputs) == 0:
|
| 149 |
-
image_inputs = None
|
| 150 |
-
if len(video_inputs) == 0:
|
| 151 |
-
video_inputs = None
|
| 152 |
-
if return_video_kwargs:
|
| 153 |
-
return image_inputs, video_inputs, {"fps": video_sample_fps_list}
|
| 154 |
-
return image_inputs, video_inputs
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
def smart_resize(
|
| 158 |
-
height: int,
|
| 159 |
-
width: int,
|
| 160 |
-
factor: int = IMAGE_FACTOR,
|
| 161 |
-
min_pixels: int = MIN_PIXELS,
|
| 162 |
-
max_pixels: int = MAX_PIXELS,
|
| 163 |
-
) -> tuple[int, int]:
|
| 164 |
-
"""
|
| 165 |
-
Rescales the image so that the following conditions are met:
|
| 166 |
-
|
| 167 |
-
1. Both dimensions (height and width) are divisible by 'factor'.
|
| 168 |
-
|
| 169 |
-
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
| 170 |
-
|
| 171 |
-
3. The aspect ratio of the image is maintained as closely as possible.
|
| 172 |
-
"""
|
| 173 |
-
if max(height, width) / min(height, width) > MAX_RATIO:
|
| 174 |
-
raise ValueError(
|
| 175 |
-
f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}"
|
| 176 |
-
)
|
| 177 |
-
h_bar = max(factor, round_by_factor(height, factor))
|
| 178 |
-
w_bar = max(factor, round_by_factor(width, factor))
|
| 179 |
-
if h_bar * w_bar > max_pixels:
|
| 180 |
-
beta = math.sqrt((height * width) / max_pixels)
|
| 181 |
-
h_bar = floor_by_factor(height / beta, factor)
|
| 182 |
-
w_bar = floor_by_factor(width / beta, factor)
|
| 183 |
-
elif h_bar * w_bar < min_pixels:
|
| 184 |
-
beta = math.sqrt(min_pixels / (height * width))
|
| 185 |
-
h_bar = ceil_by_factor(height * beta, factor)
|
| 186 |
-
w_bar = ceil_by_factor(width * beta, factor)
|
| 187 |
-
return h_bar, w_bar
|
| 188 |
-
|
| 189 |
|
| 190 |
class RexOmniWrapper:
|
| 191 |
"""
|
| 192 |
High-level wrapper for Rex-Omni
|
| 193 |
"""
|
| 194 |
-
|
| 195 |
def __init__(
|
| 196 |
self,
|
| 197 |
model_path: str,
|
|
@@ -304,8 +134,7 @@ class RexOmniWrapper:
|
|
| 304 |
|
| 305 |
elif self.backend == "transformers":
|
| 306 |
import torch
|
| 307 |
-
from transformers import
|
| 308 |
-
Qwen2_5_VLForConditionalGeneration)
|
| 309 |
|
| 310 |
# Initialize transformers model
|
| 311 |
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
|
|
| 4 |
"""
|
| 5 |
Main wrapper class for Rex Omni
|
| 6 |
"""
|
| 7 |
+
|
|
|
|
| 8 |
import json
|
|
|
|
| 9 |
import time
|
|
|
|
| 10 |
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 11 |
|
|
|
|
| 12 |
import torch
|
| 13 |
from PIL import Image
|
| 14 |
+
from qwen_vl_utils import process_vision_info, smart_resize
|
| 15 |
|
| 16 |
from .parser import convert_boxes_to_normalized_bins, parse_prediction
|
| 17 |
from .tasks import TASK_CONFIGS, TaskType, get_keypoint_config, get_task_config
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
class RexOmniWrapper:
|
| 21 |
"""
|
| 22 |
High-level wrapper for Rex-Omni
|
| 23 |
"""
|
| 24 |
+
|
| 25 |
def __init__(
|
| 26 |
self,
|
| 27 |
model_path: str,
|
|
|
|
| 134 |
|
| 135 |
elif self.backend == "transformers":
|
| 136 |
import torch
|
| 137 |
+
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
|
|
|
| 138 |
|
| 139 |
# Initialize transformers model
|
| 140 |
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|