File size: 25,405 Bytes
fcaa164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
"""
HTML generator for project page generation.
Generates the final HTML project page from planned content.
"""

import json
import yaml
import os
import io
import re
import json
import yaml
from pathlib import Path
from urllib.parse import urlparse
from datetime import datetime
from jinja2 import Environment, StrictUndefined
from camel.models import ModelFactory
from camel.agents import ChatAgent
from utils.wei_utils import get_agent_config, account_token
from utils.src.utils import get_json_from_response, extract_html_code_block
from ProjectPageAgent.css_checker import check_css 
from utils.src.utils import run_sync_screenshots
from PIL import Image
from camel.messages import BaseMessage


from camel.models import ModelFactory

def to_url(input_path_or_url: str) -> str:
    parsed = urlparse(input_path_or_url)
    if parsed.scheme in ("http", "https", "file"):
        return input_path_or_url
    p = Path(input_path_or_url).expanduser().resolve()
    if not p.exists():
        raise FileNotFoundError(f"Input not found: {p}")
    return p.as_uri()  # file://...


def crop_image_to_max_size(image_path, max_bytes=8*1024*1024, output_path=None):
    img = Image.open(image_path)
    img_format = img.format
    if output_path is None:
        output_path = image_path

    buffer = io.BytesIO()
    img.save(buffer, format=img_format)
    size = buffer.getbuffer().nbytes

    if size <= max_bytes:
        img.save(output_path, format=img_format)
        return output_path

    width, height = img.size
    scale = max_bytes / size
    new_height = max(int(height * scale), 1)  
    img_cropped = img.crop((0, 0, width, new_height))  
    img_cropped.save(output_path, format=img_format)

    return output_path
class ProjectPageHTMLGenerator:
    """Generates HTML project pages from planned content."""
    
    def __init__(self, agent_config,args):
        self.agent_config = agent_config
        self.args = args
        self.html_agent = self._create_html_agent()
        self.review_agent = self._create_review_agent()
        self.table_agent = self._create_table_agent()
        self.long_agent = self._create_long_agent()
        
        # self.client = OpenAI(api_key=api_key,base_url=api_url)
        
    def _create_html_agent(self):
        """Create the HTML generation agent."""
        model_type = str(self.agent_config['model_type'])
        
        # Get API key from environment variables
        api_key = None
        if self.args.model_name_t in ['4o', '4o-mini', 'gpt-4.1', 'gpt-4.1-mini', 'o1', 'o3', 'o3-mini']:
            api_key = os.environ.get('OPENAI_API_KEY')
        elif self.args.model_name_t in ['gemini', 'gemini-2.5-pro', 'gemini-2.5-flash']:
            api_key = os.environ.get('GEMINI_API_KEY')
        elif self.args.model_name_t in ['qwen', 'qwen-plus', 'qwen-max', 'qwen-long']:
            api_key = os.environ.get('QWEN_API_KEY')
        elif self.args.model_name_t.startswith('openrouter_'):
            api_key = os.environ.get('OPENROUTER_API_KEY')
        elif self.args.model_name_t in ['zhipuai']:
            api_key = os.environ.get('ZHIPUAI_API_KEY')
        
        if model_type.startswith('vllm_qwen') or 'vllm' in model_type.lower():
            model = ModelFactory.create(
                model_platform=self.agent_config['model_platform'],
                model_type=self.agent_config['model_type'],
                model_config_dict=self.agent_config['model_config'],
                url=self.agent_config.get('url', None),
                api_key=api_key,
            )
        else:
            model = ModelFactory.create(
                model_platform=self.agent_config['model_platform'],
                model_type=self.agent_config['model_type'],
                model_config_dict=self.agent_config['model_config'],
                api_key=api_key,
            )
        
        system_message = """You are an expert web developer specializing in creating professional project pages for research papers. 
        You have extensive experience in HTML5, CSS3, responsive design, and academic content presentation. 
        Your goal is to create engaging, well-structured, and visually appealing project pages."""
        
        return ChatAgent(
            system_message=system_message,
            model=model,
            message_window_size=10
        )
    def _create_review_agent(self):
        with open('utils/prompt_templates/page_templates/html_review.yaml', 'r') as f:
            prompt_config = yaml.safe_load(f)

        jinja_env = Environment(undefined=StrictUndefined)
        system_message_template = jinja_env.from_string(prompt_config["system_prompt"])

        system_message = system_message_template.render()

        model_type = self.args.model_name_v
        
        # Get API key from environment variables
        api_key = None
        if self.args.model_name_v in ['4o', '4o-mini', 'gpt-4.1', 'gpt-4.1-mini', 'o1', 'o3', 'o3-mini']:
            api_key = os.environ.get('OPENAI_API_KEY')
        elif self.args.model_name_v in ['gemini', 'gemini-2.5-pro', 'gemini-2.5-flash']:
            api_key = os.environ.get('GEMINI_API_KEY')
        elif self.args.model_name_v in ['qwen', 'qwen-plus', 'qwen-max', 'qwen-long']:
            api_key = os.environ.get('QWEN_API_KEY')
        elif self.args.model_name_v.startswith('openrouter_'):
            api_key = os.environ.get('OPENROUTER_API_KEY')
        elif self.args.model_name_v in ['zhipuai']:
            api_key = os.environ.get('ZHIPUAI_API_KEY')
        
        config = get_agent_config(model_type)
        model = ModelFactory.create(
            model_platform=config['model_platform'],
            model_type=config['model_type'],
            model_config_dict=config['model_config'],
            url=config.get('url', None),
            api_key=api_key,
        )

        return ChatAgent(
            system_message=system_message, 
            model=model,
            message_window_size=10
        )


    def _create_table_agent(self):
        
        model_type = self.args.model_name_v
        
        # Get API key from environment variables
        api_key = None
        if self.args.model_name_v in ['4o', '4o-mini', 'gpt-4.1', 'gpt-4.1-mini', 'o1', 'o3', 'o3-mini']:
            api_key = os.environ.get('OPENAI_API_KEY')
        elif self.args.model_name_v in ['gemini', 'gemini-2.5-pro', 'gemini-2.5-flash']:
            api_key = os.environ.get('GEMINI_API_KEY')
        elif self.args.model_name_v in ['qwen', 'qwen-plus', 'qwen-max', 'qwen-long']:
            api_key = os.environ.get('QWEN_API_KEY')
        elif self.args.model_name_v.startswith('openrouter_'):
            api_key = os.environ.get('OPENROUTER_API_KEY')
        elif self.args.model_name_v in ['zhipuai']:
            api_key = os.environ.get('ZHIPUAI_API_KEY')
      
        vlm_config = get_agent_config(model_type)
        vlm_model = ModelFactory.create(
            model_platform=vlm_config['model_platform'],
            model_type=vlm_config['model_type'],
            model_config_dict=vlm_config['model_config'],
            url=vlm_config.get('url', None),
            api_key=api_key,
        )
        return ChatAgent(
            system_message=None,
            model=vlm_model,
            message_window_size=10,
        )
    def _create_long_agent(self):
        model_type = self.args.model_name_t
        
        # Get API key from environment variables
        api_key = None
        if self.args.model_name_t in ['4o', '4o-mini', 'gpt-4.1', 'gpt-4.1-mini', 'o1', 'o3', 'o3-mini']:
            api_key = os.environ.get('OPENAI_API_KEY')
        elif self.args.model_name_t in ['gemini', 'gemini-2.5-pro', 'gemini-2.5-flash']:
            api_key = os.environ.get('GEMINI_API_KEY')
        elif self.args.model_name_t in ['qwen', 'qwen-plus', 'qwen-max', 'qwen-long']:
            api_key = os.environ.get('QWEN_API_KEY')
        elif self.args.model_name_t.startswith('openrouter_'):
            api_key = os.environ.get('OPENROUTER_API_KEY')
        elif self.args.model_name_t in ['zhipuai']:
            api_key = os.environ.get('ZHIPUAI_API_KEY')
        
        long_config = get_agent_config(model_type)
        long_model = ModelFactory.create(
            model_platform=long_config['model_platform'],
            model_type=long_config['model_type'],
            model_config_dict=long_config['model_config'],
            url=long_config.get('url', None),
            api_key=api_key,
        )
       
        return ChatAgent(
            system_message=None,
            model=long_model,
            message_window_size=10,
            token_limit=long_config.get('token_limit', None)
        )
    def render_html_to_png(self, iter, html_content, project_output_dir) -> str:

        import time
        tmp_html = Path(project_output_dir) / f"index_iter{iter}.html"
        tmp_html.write_text(html_content, encoding="utf-8")
        url = tmp_html.resolve().as_uri()

        image_path = str(Path(project_output_dir) / f"page_iter{iter}.png")

        run_sync_screenshots(url, image_path)
        return image_path

    def get_revision_suggestions(self, image_path: str, html_path) -> str:
        
        def crop_image_max_width(img, max_width=1280):
            width, height = img.size
            if width > max_width:
                img = img.crop((0, 0, max_width, height))  # (left, top, right, bottom)
            return img
        img = Image.open(image_path)
        img = crop_image_max_width(img, max_width=1280)
        img.save(image_path,format='PNG')
        crop_image_to_max_size(image_path=image_path,output_path=image_path)
        img =Image.open(image_path)
        
        message = BaseMessage.make_user_message(
                role_name="User",
                content = '\nHere is the image of the generated project page.',
                image_list=[img]
        )
        response = self.review_agent.step(message)

        return get_json_from_response(response.msgs[0].content.strip())
    

    def modify_html_table(self, html_content: str,html_dir: str):

        
        in_tokens, out_tokens = 0, 0
        print("Starting table modification...")
        def replace_tables_in_html(html_content, table_html_map, paper_name):
  
            pattern = rf'<img[^>]*src="(assets/{paper_name}-table-\d+\.png)"[^>]*>'
            
            def repl(match):
                img_path = match.group(1)  # e.g. assets/MambaFusion-table-10.png
                if img_path in table_html_map:
                    return table_html_map[img_path]
                return match.group(0)  
            
            return re.sub(pattern, repl, html_content)

        # ============ step 1 extract table ============
        
        pattern = rf"assets/{self.args.paper_name}-table-\d+\.png"
        with open(os.path.join(self.args.output_dir,self.args.paper_name, html_dir,'index_no_modify_table.html'), 'r', encoding='utf-8') as f:
            html_content = f.read()
        matches = re.findall(pattern, html_content)

        if matches is None:
            print("No table images found, skipping modification.")
            return None, 0, 0
        
     
        model_type = self.args.model_name_v
        print(f"Starting table modification phase 1: Table Extraction with {model_type}...")
        
        with open('utils/prompt_templates/page_templates/extract_table.yaml', 'r') as f:
            table_extraction_config = yaml.safe_load(f)
        content = table_extraction_config["system_prompt"]

        init_message = BaseMessage.make_user_message(
            role_name="User",
            content=content
        )
        response = self.table_agent.step(init_message)
        in_tok , out_tok = account_token(response)
        in_tokens += in_tok
        out_tokens += out_tok
        # Step 2
        table_html_map = {}

        matches = list(set(matches))
        for match in matches:
            img_path =os.path.join(self.args.output_dir,self.args.paper_name, html_dir,match)
            print(f"Processing table image: {img_path}")
            img = Image.open(img_path)
            msg = BaseMessage.make_user_message(
                role_name="User",
                content=f'''Here is table image: {match}
            Please output its HTML table (<table>...</table>) with an inline <style>...</style> block.
            Only return pure HTML , nothing else.
            ''',
                image_list=[img]
            )
            response = self.table_agent.step(msg)
            in_tok , out_tok = account_token(response)
            in_tokens += in_tok
            out_tokens += out_tok
            print(f'in:{in_tok},out:{out_tok}')
            _output_html = response.msgs[0].content.strip()
            table_html_map[match] = _output_html
            tabel_dir = os.path.join(self.args.output_dir,self.args.paper_name, html_dir)
            os.makedirs(f'{tabel_dir}/table_html', exist_ok=True)
            
            with open(f'{tabel_dir}/table_html/{match.replace("/", "_")}.html', 'w', encoding='utf-8') as f:
                f.write(table_html_map[match])

        # ============ 阶段 2:HTML Merge ============
   
        self.table_agent.reset()
        img_path =os.path.join(self.args.output_dir,self.args.paper_name, html_dir,'page_final_no_modify_table.png')
        img = Image.open(img_path)
        with open('utils/prompt_templates/page_templates/color_suggestion.yaml','r') as f:
            prompt_config = yaml.safe_load(f)

        jinja_env = Environment(undefined=StrictUndefined)
        init_prompt_template = jinja_env.from_string(prompt_config["system_prompt"])

        init_prompt = init_prompt_template.render()

        msg = BaseMessage.make_user_message(
            role_name="User",
            content=init_prompt, 
            image_list=[img]
        )

        color_response = self.table_agent.step(msg)
        color_suggestion = color_response.msgs[0].content.strip()
        in_tok , out_tok = account_token(color_response)
        in_tokens += in_tok
        out_tokens += out_tok

      
        print(f"Starting table modification phase 2: HTML Merging with {model_type}...")
        

        tables_str = "\n\n".join(
            [f"Table extracted for {fname}:\n{html}" for fname, html in table_html_map.items()]
        )
        with open("utils/prompt_templates/page_templates/merge_html_table.yaml",'r') as f:
            prompt_config = yaml.safe_load(f)
        
        jinja_env = Environment(undefined=StrictUndefined)
        template = jinja_env.from_string(prompt_config["template"])

        jinja_args = {
            'html_content': html_content,
            'color_suggestion': color_suggestion,
            'tables_str': tables_str
        }

        prompt = template.render(**jinja_args)

        final_message = BaseMessage.make_user_message(
            role_name = "User",
            content = prompt
        )

        for i in range(3):
            self.long_agent.reset()
            response = self.long_agent.step(final_message)
            in_tok, out_tok = account_token(response)
            in_tokens += in_tok
            out_tokens += out_tok
            output_html = response.msgs[0].content.strip()
            print(f'in:{in_tok},out:{out_tok}')
            exteact_html_code = extract_html_code_block(output_html)
            if exteact_html_code is not None:
                break
            print(f"html format is not correct, regenerate {i} turn")
        
        return exteact_html_code, in_tokens, out_tokens


    def modify_html_from_human_feedback(self, html_content: str, user_feedback: str):
        """
        Modify HTML based on human feedback using the HTML agent.
        
        Args:
            html_content: Original HTML content
            user_feedback: Feedback from human reviewers
            
        Returns:
            str: Modified HTML content
        """
        in_tokens, out_tokens = 0, 0
        print("Starting HTML modification based on human feedback...")
        with open('utils/prompt_templates/page_templates/modify_html_from_human_feedback.yaml', 'r') as f:
            modifier_config = yaml.safe_load(f)

        jinja_env = Environment(undefined=StrictUndefined)
        template = jinja_env.from_string(modifier_config["template"])

        jinja_args = {
            'generated_html': html_content,
            'user_feedback': user_feedback
        }

        prompt = template.render(**jinja_args)
        for i in range(3):
            self.html_agent.reset()
            response = self.html_agent.step(prompt)
            in_tok, out_tok = account_token(response)
            in_tokens += in_tok
            out_tokens += out_tok
            print(f'input_token: {in_tok}, output_token: {out_tok}')
            modified_html = extract_html_code_block(response.msgs[0].content)

            if modified_html is not None:
                break
            print(f"html format is not correct, regenerate {i} turn")
        
        return modified_html, in_tokens, out_tokens
    

    def generate_complete_html(self, args, generated_content, html_dir, html_template=None):
        """
        Generate complete HTML by combining all sections, then render to PNG,
        send to OpenAI API for feedback, and regenerate HTML with suggestions.
        """
        
        # Create output directory for this specific project
        project_output_dir = f"{args.output_dir}/{args.paper_name}"
        html_path = os.path.join(project_output_dir, html_dir)
        if args.resume != 'html_check':
            with open('utils/prompt_templates/page_templates/html_generation.yaml', 'r') as f:
                generator_config = yaml.safe_load(f)

            jinja_env = Environment(undefined=StrictUndefined)
            template = jinja_env.from_string(generator_config["template"])

            jinja_args = {
                'generated_content': json.dumps(generated_content, indent=2),
                'html_template': html_template,
            }

            prompt = template.render(**jinja_args)
            for i in range(3):
                self.html_agent.reset()
                # print(self.html_agent)
                
                response = self.html_agent.step(prompt)
                # print(response.msgs[0].content)
                input_token, output_token = account_token(response)
                print(f'input_token: {input_token}, output_token: {output_token}')
                #print(input_token, output_token)
                html_content = extract_html_code_block(response.msgs[0].content)

                if html_content is not None:
                    break
                print(f"html format is not correct, regenerate {i} turn")
            

            # check css paths
            html_content = check_css(html_content, html_template)

            with open(os.path.join(html_path, 'index_init.html'),'w') as f:
                f.write(html_content)

            print(f"Initial HTML generation completed. Tokens: {input_token} -> {output_token}")

        else: 
            with open(os.path.join(html_path, 'index_init.html'), 'r', encoding='utf-8') as f:
                html_content = f.read()
        
        revised_html = html_content
        
        for i in range(self.args.html_check_times):
            if i==0:
                print("starting html check and revision...")
   
            image_path = self.render_html_to_png(i, revised_html, html_path)

            suggestions = self.get_revision_suggestions(image_path,os.path.join(html_path,f'index_iter{i}.html'))
            # print(f"Revision suggestions from {self.args.model_name_v}:\n", suggestions)
            
            review_path = f'project_contents/{args.paper_name}_html_review_iter{i}.json'
            with open(review_path, 'w') as f:
                json.dump(suggestions, f, indent=4)

            self.html_agent.reset()
            with open('utils/prompt_templates/page_templates/html_modify_from_suggestion.yaml', 'r') as f:
                regenerator_config = yaml.safe_load(f)

            jinja_env = Environment(undefined=StrictUndefined)
            _template = jinja_env.from_string(regenerator_config["template"])

            _jinja_args = {
                'existing_html': revised_html,
                'suggestions': suggestions
            }

            revision_prompt = _template.render(**_jinja_args)

            # print(revision_prompt)
            revised_response = self.html_agent.step(revision_prompt)
            # print(revised_response.msgs[0].content)
            revised_html = extract_html_code_block(revised_response.msgs[0].content)

            print("Revised HTML generation completed.")
            input_token, output_token = account_token(revised_response)
            print(f'in:{input_token}, out:{output_token}')

        return revised_html, input_token, output_token

    
    def save_html_file(self, html_content, args, html_dir, output_dir="generated_project_pages"):
        """
        Save the generated HTML to a file.
        
        Args:
            html_content: Generated HTML content
            args: Command line arguments
            output_dir: Output directory for the HTML file
            
        Returns:html_check
            str: Path to the saved HTML file
        """
        os.makedirs(output_dir, exist_ok=True)
        
        # Create output directory for this specific project
        project_output_dir = f"{output_dir}/{args.paper_name}"
        os.makedirs(project_output_dir, exist_ok=True)
        
        # Save HTML file
        html_file_path = f"{project_output_dir}/{html_dir}/index.html"
        with open(html_file_path, 'w', encoding='utf-8') as f:
            f.write(html_content)
        
        print(f"HTML project page saved to: {html_file_path}")
        
        return html_file_path
    
    def create_assets_directory(self, args, html_dir, output_dir="generated_project_pages"):
        """
        Create assets directory and copy images/tables.
        
        Args:
            args: Command line arguments
            output_dir: Output directory
            
        Returns:
            str: Path to the assets directory
        """
        project_output_dir = f"{output_dir}/{args.paper_name}"
        assets_dir = os.path.join(project_output_dir, html_dir, "assets")
        os.makedirs(assets_dir, exist_ok=True)
        
        # Copy images and tables from the extracted assets
        source_assets_dir = f"generated_project_pages/images_and_tables/{args.paper_name}"
        if os.path.exists(source_assets_dir):
            import shutil
            for file in os.listdir(source_assets_dir):
                if file.endswith(('.png', '.jpg', '.jpeg', '.gif')):
                    src_path = os.path.join(source_assets_dir, file)
                    dst_path = os.path.join(assets_dir, file)
                    shutil.copy2(src_path, dst_path)
        
        print(f"Assets directory created at: {assets_dir}")
        return assets_dir
    
    def generate_metadata(self, generated_content, args):
        """
        Generate metadata for the project page.
        
        Args:
            generated_content: Generated content
            args: Command line arguments
            
        Returns:
            dict: Metadata for the project page
        """
        metadata = {
            'title': generated_content.get('meta', {}).get('poster_title', 'Research Project'),
            'description': generated_content.get('meta', {}).get('abstract', '')[:160],
            'authors': generated_content.get('meta', {}).get('authors', ''),
            'affiliations': generated_content.get('meta', {}).get('affiliations', ''),
            'keywords': [],
            'generated_by': f"Paper2ProjectPage ({args.model_name_t}_{args.model_name_v})",
            'generation_date': str(datetime.now())
        }
        
        # Extract keywords from content
        content_text = json.dumps(generated_content, ensure_ascii=False)
        # Simple keyword extraction (can be improved)
        words = content_text.lower().split()
        word_freq = {}
        for word in words:
            if len(word) > 4 and word.isalpha():
                word_freq[word] = word_freq.get(word, 0) + 1
        
        # Get top 10 most frequent words as keywords
        sorted_words = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)
        metadata['keywords'] = [word for word, freq in sorted_words[:10]]
        
        return metadata
    
    def save_metadata(self, metadata, args, output_dir="generated_project_pages"):
        """
        Save metadata to a JSON file.
        
        Args:
            metadata: Generated metadata
            args: Command line arguments
            output_dir: Output directory
            
        Returns:
            str: Path to the saved metadata file
        """
        project_output_dir = f"{output_dir}/{args.paper_name}"
        metadata_file_path = f"{project_output_dir}/metadata.json"
        
        with open(metadata_file_path, 'w', encoding='utf-8') as f:
            json.dump(metadata, f, indent=4, ensure_ascii=False)
        
        print(f"Metadata saved to: {metadata_file_path}")
        return metadata_file_path