File size: 21,193 Bytes
fcaa164 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import json
import logging
import os
import random
import re
import sys
from pathlib import Path
from typing import Any, Dict, List, Literal, Optional
import numpy as np
from rouge import Rouge
from tqdm import tqdm
from camel.agents import ChatAgent
from camel.benchmarks.base import BaseBenchmark
from camel.messages import BaseMessage
from camel.utils import download_github_subdirectory
logger = logging.getLogger(__name__)
# Add current folder to sys.path to enable relative import
current_folder = os.getcwd()
if current_folder not in sys.path:
sys.path.append(current_folder)
def process_messages(
chat_history: List[Dict[str, Any]],
prompt: str,
) -> List[Dict[str, str]]:
"""
Processes chat history into a structured format for further use.
Args:
chat_history (List[Dict[str, Any]):
A list of dictionaries representing the chat history.
prompt (str): A propmt to be set as the system message.
Returns:
List[Dict[str, str]]: A list of dictionaries representing
the processed messages, where each dictionary has:
- 'role': The role of the message ('system', 'user', or 'assistant').
- 'content': The content of the message, including formatted
API responses when applicable.
"""
messages = [{'role': 'system', 'content': prompt}]
for item in chat_history:
role_map = {'User': 'user', 'AI': 'assistant', 'API': 'system'}
chat_role = role_map.get(
item['role'], 'unknown'
) # default role to 'unknown'
if item['role'] == 'API':
chat_content = '[{}({})] Response: {}'.format(
item['api_name'],
', '.join(
[
'{}=\'{}\''.format(k, v)
for k, v in item['param_dict'].items()
]
),
str(item['result']['output']),
)
else:
chat_content = item['text']
messages.append({'role': chat_role, 'content': chat_content})
return messages
class APIBankBenchmark(BaseBenchmark):
r"""API-Bank Benchmark adapted from `API-Bank:
A Comprehensive Benchmark for Tool-Augmented LLMs`
<https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/api-bank>.
Args:
save_to (str): The file to save the results.
processes (int, optional): The number of processes to use.
(default: :obj:`1`)
"""
def __init__(
self,
save_to: str,
processes: int = 1,
):
r"""Initialize the APIBank benchmark.
Args:
save_to (str): The file to save the results.
processes (int, optional): The number of processes to use for
parallel processing. (default: :obj:`1`)
"""
# Predefine data_dir for better import management
super().__init__("apibank", "api_bank", save_to, processes)
self._data: Dict[str, List[APIBankSample]] = dict() # type: ignore[assignment]
def download(self):
r"""Download APIBank dataset and code from Github."""
repo = "AlibabaResearch/DAMO-ConvAI"
subdir = "api-bank"
data_dir = self.data_dir
download_github_subdirectory(repo, subdir, data_dir)
sys.path.insert(0, self.data_dir)
logger.info("Download completed.")
def load(self, level: str, force_download: bool = False): # type: ignore[override]
r"""Load the APIBank Benchmark dataset.
Args:
level (str): Level to run benchmark on.
force_download (bool, optional): Whether to
force download the data.
"""
if force_download:
logger.info("Force downloading data.")
self.download()
if level == "level-1":
file_path = Path("api_bank/lv1-lv2-samples/level-1-given-desc")
elif level == 'level-2':
file_path = Path("api_bank/lv1-lv2-samples/level-2-toolsearcher")
jsonl_files = [
f for f in os.listdir(file_path) if f.endswith('.jsonl')
]
for file in tqdm(jsonl_files, desc="Processing files"):
history = []
with open(file_path / file, 'r') as f:
for line in f:
history.append(json.loads(line))
samples = APIBankSample.from_chat_history(history)
self._data[file.rsplit('.', 1)[0]] = samples
# Change import to relative import in the downloaded python files
def process_files(folder_path, replacements):
r"""Replace absolute imports in downloaded files with
relative import."""
for file in os.listdir(folder_path):
if file.endswith(".py"):
file_path = os.path.join(folder_path, file)
try:
with open(file_path, "r", encoding="utf-8") as file:
content = file.read()
original_content = content
for pattern, replacement in replacements:
content = re.sub(pattern, replacement, content)
if content != original_content:
with open(
file_path, "w", encoding="utf-8"
) as file:
file.write(content)
logger.info(f"Updated file: {file_path}")
except Exception as e:
logger.info(f"Error processing file {file_path}: {e}")
api_bank_folder = "api_bank"
apis_folder = os.path.join(api_bank_folder, "apis")
apis_replacements = [
(r"from apis.api", "from .api"),
(r"from apis import", "from .api import"),
]
api_bank_replacements = [
(r"from apis", "from .apis"),
(r"from api_call_extraction", "from .api_call_extraction"),
(r"f'{basename}", r"f'api_bank.{basename}"),
]
process_files(apis_folder, apis_replacements)
process_files(api_bank_folder, api_bank_replacements)
def run( # type: ignore[override, return]
self,
agent: ChatAgent,
level: Literal["level-1", "level-2"],
api_test_enabled=True,
randomize: bool = False,
subset: Optional[int] = None,
) -> Dict[str, Any]:
r"""Run the benchmark.
Args:
agent (ChatAgent): The agent to run the
benchmark.
level (Literal['level-1', 'level-2']):
The level to run the benchmark on.
randomize (bool, optional): Whether to
randomize the data.
api_test_enabled (bool): Whether to test
API calling (`True`) or response (`False`)
(default: :obj:`False`)
subset (Optional[int], optional):
The subset of data to run.
(default: :obj:`None`)
Returns:
Dict[str, Any]: The results of the benchmark.
"""
logger.info(f"Running APIBench benchmark on {level}.")
self.load(level)
datas = self._data
# Shuffle and subset data if necessary
if randomize:
randomized_items = list(datas.items())
random.shuffle(randomized_items)
datas = dict(randomized_items)
if subset:
datas = dict(list(datas.items())[:subset])
logger.info(f"Number of tasks: {len(datas)}")
# Initialize results storage
self._results = []
# The following code are adapted from the evaluator
# from the original repo:
tool_search_enabled = level == "level-2"
dialog_test_enabled = not api_test_enabled
total_api_calls, correct_api_calls, rougel_scores = 0, 0, []
with open(self.save_to, "w") as f:
for test in tqdm(datas, desc="Running"):
samples = self._data[test]
evaluator = Evaluator(samples) # type: ignore[arg-type]
for sample_id in evaluator.get_all_sample_ids():
# Process sample and generate response
sample = evaluator.dataset[sample_id]
if (
sample.ground_truth['role'] == 'API'
and api_test_enabled
):
if tool_search_enabled:
_, chat_history = evaluator.get_model_input(
sample_id
)
api_descriptions = evaluator.get_api_description(
'ToolSearcher'
)
else:
api_descriptions, chat_history = (
evaluator.get_model_input(sample_id)
)
messages = process_messages(
chat_history, API_CALL_PROMPT + api_descriptions
)
model_output = agent_call(messages, agent)
api_call = get_api_call(model_output)
# Evaluate API call
if api_call:
try:
correct, model_output_result = (
evaluator.evaluate(sample_id, api_call)
)
except AssertionError as e:
if 'The API name is not correct.' not in str(
e
):
raise e
logging.info('AssertionError: {}'.format(e))
correct = False
else:
model_output_result = 'No API call found'
correct = False
if correct:
correct_api_calls += 1
logging.info(
'Correct API call: {} Ground truth: {}'.format(
api_call, sample.ground_truth
)
)
else:
logging.info(
'Incorrect model output: {} Result: {} \
Ground truth: {} File: {} Sample ID: {} \
Messages: {}'.format(
model_output.replace('\n', ' '),
model_output_result,
sample.ground_truth,
test,
sample_id,
messages[1:],
)
)
total_api_calls += 1
self._results.append(
{
'Role': 'API',
'Model_output': model_output,
'Model_output_result': model_output_result,
'Ground_truth': sample.ground_truth,
'Test': test,
'Correct': correct,
}
)
f.write(json.dumps(self._results[-1], indent=2) + "\n")
elif (
sample.ground_truth['role'] == 'AI'
and dialog_test_enabled
):
# Process sample and generate response
api_descriptions, chat_history = (
evaluator.get_model_input(sample_id)
)
messages = process_messages(
chat_history, RESPONSE_PROMPT + api_descriptions
)
model_output = agent_call(messages, agent)
# Evaluate model response
if model_output:
score = evaluator.evaluate(sample_id, model_output)
else:
score = 0
rougel_scores.append(score)
if score < 0.2:
logging.info(
'Low score: {} Score: {} Ground truth: {} \
Test: {} Sample ID: {} \
Messages: {}'.format(
model_output.replace('\n', ' '),
score,
sample.ground_truth,
test,
sample_id,
messages[1:],
)
)
self._results.append(
{
'Role': 'AI',
'Model_output': model_output,
'Score': score,
'Ground_truth': sample.ground_truth,
'Test': test,
}
)
f.write(json.dumps(self._results[-1], indent=2) + "\n")
f.flush()
if api_test_enabled:
return {
'total': total_api_calls,
'correct': correct_api_calls,
"accuracy": correct_api_calls / total_api_calls
if total_api_calls
else 0,
}
elif dialog_test_enabled:
return {'Dialog_score': np.mean(rougel_scores)}
# The following code are migrated from the original repo:
# https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/api-bank
def agent_call(messages: List[Dict], agent: ChatAgent):
r"""Add messages to agent memory and get response."""
for i, msg in enumerate(messages):
if msg['role'] == 'user':
message = BaseMessage.make_user_message(
role_name="CAMEL User", content=msg['content']
)
elif msg['role'] == 'assistant':
message = BaseMessage.make_assistant_message(
role_name="CAMEL Assistant", content=msg['content']
)
elif msg['role'] == 'system':
message = BaseMessage.make_assistant_message(
role_name="System", content=msg['content']
)
else:
raise ValueError(f"Unrecognized role: {msg['role']}")
if i == len(messages) - 1:
break
agent.record_message(message)
response = agent.step(message)
model_output = response.msgs[0].content
agent.reset()
return model_output
def calculate_rouge_l_score(reference, hypothesis):
r"""Calculate rouge l score between hypothesis and reference."""
rouge = Rouge()
scores = rouge.get_scores(hypothesis, reference)
rouge_l_score = scores[0]['rouge-l']['f']
return rouge_l_score
def get_api_call(model_output):
r"""Parse api call from model output."""
api_call_pattern = r"\[(\w+)\((.*)\)\]"
api_call_pattern = re.compile(api_call_pattern)
match = api_call_pattern.search(model_output)
if match:
return match.group(0)
else:
return None
class APIBankSample:
r"""APIBank sample used to load the datasets."""
def __init__(self, chat_history, apis, ground_truth):
self.chat_history = chat_history
self.apis = apis
self.ground_truth = ground_truth
def __repr__(self):
return 'Sample(chat_history={}, apis={}, ground_truth={})'.format(
self.chat_history, self.apis, self.ground_truth
)
@classmethod
def from_chat_history(cls, chat_history):
apis = set()
api_positions = []
for i, item in enumerate(chat_history):
if item['role'] == 'API':
apis.add(item['api_name'])
api_positions.append(i)
samples = []
for i in api_positions:
sample = cls(chat_history[:i], apis, chat_history[i])
samples.append(sample)
sample = cls(chat_history[: i + 1], apis, chat_history[i + 1])
samples.append(sample)
return samples
class Evaluator:
r"""Evaluator for APIBank benchmark."""
def __init__(self, samples: List[APIBankSample]):
# Place holder for import as the import
# only works after the files have been downloaded
try:
from api_bank.tool_manager import ( # type: ignore[import-not-found]
ToolManager,
)
except Exception as e:
logger.info(f"{e}, Module will be imported after download.")
self.dataset = samples
self.sample_ids = list(range(len(self.dataset)))
os.chdir("api_bank")
self.tool_manager = ToolManager("apis")
os.chdir("..")
def get_all_sample_ids(self):
return self.sample_ids
def get_api_description(self, api_name):
return self.tool_manager.get_api_description(api_name)
def get_model_input(self, sample_id: int):
sample = self.dataset[sample_id]
apis = sample.apis
chat_history = sample.chat_history
api_descriptions = []
for api_name in apis:
api_descriptions.append(
self.tool_manager.get_api_description(api_name)
)
api_description = '\n'.join(api_descriptions)
return api_description, chat_history
def evaluate(self, sample_id, model_output):
try:
from api_bank.api_call_extraction import ( # type: ignore[import-not-found]
parse_api_call,
)
except Exception as e:
logger.info(f"{e}, Module will be imported after download.")
sample = self.dataset[sample_id]
ground_truth = sample.ground_truth
if ground_truth['role'] == 'API':
api_name, param_dict = parse_api_call(model_output)
if api_name != ground_truth['api_name']:
return False, 'API Name Mismatch: {} vs {}'.format(
api_name, ground_truth['api_name']
)
try:
result = self.tool_manager.api_call(api_name, **param_dict)
except Exception as e:
return False, str(e)
api = self.tool_manager.init_tool(api_name)
try:
correct = api.check_api_call_correctness(
result, ground_truth['result']
)
except KeyError:
correct = False
result = 'KeyError' + str(result)
return correct, result
elif ground_truth['role'] == 'AI':
score = calculate_rouge_l_score(ground_truth['text'], model_output)
return round(score, 4)
API_CALL_PROMPT = '''
Based on the given API description and the existing \
conversation history 1..t, please generate the API request \
that the AI should call in step t+1 and output it in the \
format of [ApiName(key1='value1', key2='value2', ...)], \
replace the ApiName with the actual API name, and \
replace the key and value with the actual parameters. \
Your output should start with a square bracket "[" \
and end with a square bracket "]". Do not output any \
other explanation or prompt or the result of the API call in your output.
This year is 2023.
Input:
User: [User's utterence]
AI: [AI's utterence]
Expected output:
[ApiName(key1='value1', key2='value2', ...)]
API descriptions:
'''
RESPONSE_PROMPT = '''
Based on the given API description and the existing \
conversation history 1..t, please generate the next \
dialog that the AI should response after the API call t.
This year is 2023.
Input:
User: [User's utterence]
AI: [AI's utterence]
[ApiName(key1='value1', key2='value2', …)]
Expected output:
AI: [AI's utterence]
API descriptions:
'''
|