File size: 19,133 Bytes
fcaa164 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import json
import logging
import random
from pathlib import Path
from typing import Any, Dict, Literal, Optional
import tree_sitter_python as tspython
from tqdm import tqdm
from tree_sitter import Language, Parser
from camel.agents import ChatAgent
from camel.benchmarks.base import BaseBenchmark
from camel.messages import BaseMessage
from camel.utils import download_github_subdirectory
logger = logging.getLogger(__name__)
# Mapping of dataset names to file names
# 'Oracle' retriver used here which means all the full
# API documentation will be included in the prompt
dataset_mapping = {
"huggingface": {
"api": "huggingface_api.jsonl",
"eval": "huggingface_eval.json",
"train": "huggingface_train.json",
"questions": "questions_huggingface_oracle.jsonl",
},
"tensorflowhub": {
"api": "tensorflowhub_api.jsonl",
"eval": "tensorflow_eval.json",
"train": "tensorflow_train.json",
"questions": "questions_tensorflowhub_oracle.jsonl",
},
"torchhub": {
"api": "torchhub_api.jsonl",
"eval": "torchhub_eval.json",
"train": "torchhub_train.json",
"questions": "questions_torchhub_oracle.jsonl",
},
}
# This function is migrated from the original repo:
# https://github.com/ShishirPatil/gorilla
def encode_question(question: str, dataset_name: str) -> str:
r"""Encode multiple prompt instructions into a single string."""
if dataset_name == "torchhub":
domains = "1. $DOMAIN is inferred from the task description and \
should include one of {Classification, Semantic Segmentation, \
Object Detection, Audio Separation, Video Classification, \
Text-to-Speech}."
elif dataset_name == "huggingface":
domains = "1. $DOMAIN should include one of {Multimodal Feature \
Extraction, Multimodal Text-to-Image, Multimodal \
Image-to-Text, Multimodal Text-to-Video, \
Multimodal Visual Question Answering, Multimodal Document \
Question Answer, Multimodal Graph Machine Learning, \
Computer Vision Depth Estimation, Computer Vision Image \
Classification, Computer Vision Object Detection, \
Computer Vision Image Segmentation, Computer Vision \
Image-to-Image, Computer Vision Unconditional \
Image Generation, Computer Vision Video Classification, \
Computer Vision Zero-Shor Image Classification, \
Natural Language Processing Text Classification, \
Natural Language Processing Token Classification, \
Natural Language Processing Table Question Answering, \
Natural Language Processing Question Answering, \
Natural Language Processing, Zero-Shot Classification \
Natural Language Processing Translation, Natural Language \
Processing Summarization, Natural Language Processing \
Conversational, Natural Language Processing Text \
Generation, Natural Language Processing Fill-Mask, \
Natural Language Processing Text2Text Generation, \
Natural Language Processing Sentence Similarity, \
Audio Text-to-Speech, Audio Automatic Speech Recognition, \
Audio Audio-to-Audio, Audio Audio Classification, \
Audio Voice Activity Detection, Tabular Tabular \
Classification, Tabular Tabular Regression, \
Reinforcement Learning Reinforcement Learning, \
Reinforcement Learning Robotics }"
elif dataset_name == "tensorflowhub":
domains = "1. $DOMAIN is inferred from the task description \
and should include one of {text-sequence-alignment, \
text-embedding, text-language-model, text-preprocessing, \
text-classification, text-generation, text-question-answering, \
text-retrieval-question-answering, text-segmentation, \
text-to-mel, image-classification, image-feature-vector, \
image-object-detection, image-segmentation, \
image-generator, image-pose-detection, image-rnn-agent, \
image-augmentation, image-classifier, image-style-transfer, \
image-aesthetic-quality, image-depth-estimation, \
image-super-resolution, image-deblurring, image-extrapolation, \
image-text-recognition, image-dehazing, image-deraining, \
image-enhancemenmt, image-classification-logits, \
image-frame-interpolation, image-text-detection, image-denoising, \
image-others, video-classification, video-feature-extraction, \
video-generation, video-audio-text, video-text, \
audio-embedding, audio-event-classification, audio-command-detection, \
audio-paralinguists-classification, audio-speech-to-text, \
audio-speech-synthesis, audio-synthesis, audio-pitch-extraction}"
else:
logger.info("Error: API name is not supported.")
prompt = (
question
+ "\nWrite a python program in 1 to 2 lines to call API in "
+ dataset_name
+ ".\n\nThe answer should follow the format: <<<domain>>> $DOMAIN, \
<<<api_call>>>: $API_CALL, <<<api_provider>>>: $API_PROVIDER, \
<<<explanation>>>: $EXPLANATION, <<<code>>>: $CODE}. \
Here are the requirements:\n"
+ domains
+ "\n2. The $API_CALL should have only 1 line of code \
that calls api.\n 3. The $API_PROVIDER should be the \
programming framework used.\n4. $EXPLANATION should be \
a step-by-step explanation.\n5. The $CODE is the python code.\n6. \
Do not repeat the format in your answer."
)
return prompt
class APIBenchBenchmark(BaseBenchmark):
r"""APIBench Benchmark adopted from `Gorilla: Large Language Model
Connected with Massive APIs`
<https://huggingface.co/datasets/gorilla-llm/APIBench>.
Args:
data_dir (str): The directory to save the data.
save_to (str): The file to save the results.
processes (int, optional): The number of processes to use.
(default: :obj:`1`)
"""
# TODO: Integrate retriever (pending)
def __init__(
self,
data_dir: str,
save_to: str,
processes: int = 1,
):
r"""Initialize the APIBench benchmark.
Args:
data_dir (str): The directory to save the data.
save_to (str): The file to save the results.
processes (int, optional): The number of processes to use for
parallel processing. (default: :obj:`1`)
"""
super().__init__("apibench", data_dir, save_to, processes)
def download(self):
r"""Download the APIBench dataset."""
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="gorilla-llm/APIBench",
repo_type="dataset",
local_dir=self.data_dir,
local_dir_use_symlinks=True,
)
repo = "ShishirPatil/gorilla"
subdir = "/gorilla/eval/eval-data/questions"
data_dir = self.data_dir
download_github_subdirectory(repo, subdir, data_dir)
def load(self, dataset_name: str, force_download: bool = False): # type: ignore[override]
r"""Load the APIBench Benchmark dataset.
Args:
dataset_name (str): Name of the specific dataset to be loaded.
force_download (bool, optional): Whether to force
download the data. (default: :obj:`False`)
"""
if force_download:
logger.info("Force downloading data.")
self.download()
def load_json_lines(file_path: Path):
r"""Helper function to load JSON lines from a file."""
try:
with open(file_path, "r") as f:
return [json.loads(line) for line in f]
except FileNotFoundError:
raise FileNotFoundError(f"File not found: {file_path}")
except json.JSONDecodeError as e:
raise ValueError(
f"Error decoding JSON in file {file_path}: {e}"
)
dataset_path = self.data_dir / dataset_name
if not dataset_path.exists():
raise FileNotFoundError(
f"Dataset directory does not exist: {dataset_path}"
)
for label in ['api', 'eval', 'questions']:
file_name = dataset_mapping[dataset_name][label]
file_path = (
dataset_path / file_name
if label == 'questions'
else self.data_dir / file_name
)
# Load data based on label type
if label in ['api', 'questions', 'eval']:
data = load_json_lines(file_path)
if label == 'eval':
# Extract 'api_data' specifically for eval label
data = [item['api_data'] for item in data]
self._data[label] = data
else:
raise ValueError(f"Unknown label: {label}")
ast_database = []
for data in self._data['api']:
ast_tree = ast_parse(data['api_call'])
ast_database.append(ast_tree)
self._data['ast'] = ast_database
def run( # type: ignore[override]
self,
agent: ChatAgent,
dataset_name: Literal["huggingface", "tensorflowhub", "torchhub"],
randomize: bool = False,
subset: Optional[int] = None,
) -> Dict[str, Any]:
r"""Run the benchmark.
Args:
agent (ChatAgent): The agent to run the
benchmark.
dataset_name (Literal["huggingface",
"tensorflowhub", "torchhub"]):
The dataset to run the benchmark.
randomize (bool, optional): Whether to randomize the data.
(default: :obj:`False`)
subset (Optional[int], optional): The subset of data to run.
(default: :obj:`None`)
"""
if dataset_name not in dataset_mapping:
raise ValueError(f"Invalid value for dataset: {dataset_name}.")
logger.info(f"Running APIBench benchmark on {dataset_name}.")
self.load(dataset_name)
datas = self._data['questions']
# Shuffle and subset data if necessary
if randomize:
random.shuffle(datas)
if subset:
datas = datas[:subset]
logger.info(f"Number of tasks: {len(datas)}")
# Initialize results storage
self._results = []
with open(self.save_to, "w") as f:
for question in tqdm(datas, desc="Running"):
prompt = encode_question(question["text"], dataset_name)
msg = BaseMessage.make_user_message(
role_name="User", content=prompt
)
try:
# Generate response
responses = agent.step(msg)
response = responses.msgs[0].content
api_database = self._data['api']
qa_pairs = self._data['eval']
ast_database = self._data['ast']
question_id = question['question_id']
# Evaluate response
error, correct, hallucination = evaluate_response(
response,
question_id,
dataset_name,
api_database,
qa_pairs,
ast_database,
)
self._results.append(
{
"question": question,
"agent_response": response,
"correct": correct,
"hallucination": hallucination,
"error": str(error) if error else None,
}
)
except Exception as e:
logger.warning(
f"Error in processing task: {question}: {e}"
)
self._results.append(
{
"question": question,
"agent_response": None,
"correct": False,
"hallucination": False,
"error": str(e),
}
)
agent.reset()
f.write(json.dumps(self._results[-1], indent=2) + "\n")
f.flush()
total = len(self._results)
correct = sum(r["correct"] for r in self.results)
hallucination = sum(r["hallucination"] for r in self.results)
return {
"total": total,
"correct": correct,
"hallucination": hallucination,
"accuracy": correct / total if total else "N/A",
"hallucination rate": hallucination / total if total else "N/A",
}
# This code is modified from the
# evaluators in the original repo
# https://github.com/ShishirPatil/gorilla
# Get all the subtrees given a root_node
def get_all_sub_trees(root_node):
node_stack = []
sub_tree_sexp_list = []
depth = 1
# text = root_node.text
node_stack.append([root_node, depth])
while len(node_stack) != 0:
cur_node, cur_depth = node_stack.pop()
if cur_node.child_count > 0:
sub_tree_sexp_list.append(
[
str(cur_node),
cur_depth,
cur_node,
cur_node.children[0].text,
]
)
else:
sub_tree_sexp_list.append(
[str(cur_node), cur_depth, cur_node, None]
)
for child_node in cur_node.children:
if len(child_node.children) != 0:
depth = cur_depth + 1
node_stack.append([child_node, depth])
return sub_tree_sexp_list
# Parse the program into AST trees
def ast_parse(candidate):
PY_LANGUAGE = Language(tspython.language())
parser = Parser(PY_LANGUAGE)
candidate_tree = parser.parse(bytes(candidate, "utf8")).root_node
return candidate_tree
# Get all the arguments in the ast tree
def get_args(node, dataset_name):
if node.child_count == 0:
return []
args_list = []
if dataset_name == "huggingface":
for child in node.children[0].children[0].children[1].children:
if "=" in child.text.decode():
args_list.append(child.children[2].text)
elif (
child.text.decode() != "("
and child.text.decode() != ")"
and child.text.decode() != ","
):
args_list.append(child.text)
elif dataset_name == "tensorflowhub":
for child in node.children[0].children[0].children[1].children:
if (
'model=' in child.text.decode()
or 'model =' in child.text.decode()
):
args_list.append(child.children[2].text)
elif (
child.text.decode() != "("
and child.text.decode() != ")"
and child.text.decode() != ","
):
args_list.append(child.text)
elif dataset_name == "torchhub":
for child in node.children[0].children[0].children[1].children:
if (
"repo_or_dir" in child.text.decode()
or "model" in child.text.decode()
):
args_list.append(child.children[2].text)
return args_list
# Check if there is an api match
def ast_check(candidate_subtree_list, base_tree_list, dataset_name):
for idx, base_tree in enumerate(base_tree_list):
if base_tree.children[0].children[0].child_count == 0:
continue
api_name = base_tree.children[0].children[0].children[0].text
for candidate_tree in candidate_subtree_list:
if candidate_tree[3] == api_name:
break
# Now we have a sub-tree
candidate_tree = candidate_tree[2]
args_list = get_args(base_tree, dataset_name)
if len(args_list) == 0:
continue
ast_match = True
for arg in args_list:
if (
arg.decode().lstrip("'").rstrip("'")
not in candidate_tree.text.decode()
):
ast_match = False
break
if ast_match:
return idx
return -1
def evaluate_response(
response, question_id, dataset_name, api_database, qa_pairs, ast_database
):
try:
# Index the "api_call" domain
output = response.split("api_call")
if len(output) == 1:
api_call = output[0]
else:
# Parse the output
output = output[1].split("api_provider")[0]
if ":" not in output:
start = 0
else:
start = output.index(":")
if ")" not in output:
end = -2
else:
end = output.rindex(")")
api_call = output[start + 2 : end + 1]
try:
ast_tree = ast_parse(api_call)
except Exception as parse_error:
print(f"Error parsing api_call: {api_call}, error: {parse_error}")
return parse_error, False, False
# Search for a subtree
ast_subtree_list = get_all_sub_trees(ast_tree)
# Check which ast tree is matching
database_index = ast_check(
ast_subtree_list, ast_database, dataset_name
)
# We cannot index this ast in our database
if database_index == -1:
halluncination = True
correct = False
# We index our reference api_call
ref_api_call = api_database[database_index]
# Check for functionality
if ref_api_call['domain'] == qa_pairs[question_id - 1]['domain']:
correct = True
halluncination = False
else:
return None, False, False
except Exception as e:
print(f'Error parsing response: {response}, error: {e}')
return e, False, False
return None, correct, halluncination
|