File size: 11,063 Bytes
fcaa164 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from typing import Any, Callable, Dict, List, Literal, Optional, Sequence
import numpy as np
from datasets import Dataset, load_dataset
from camel.agents import ChatAgent
from camel.benchmarks import BaseBenchmark
from camel.logger import get_logger
from camel.retrievers import AutoRetriever
logger = get_logger(__name__)
class RagasFields:
r"""Constants for RAGAS evaluation field names."""
INPUT_CONTEXT = "contexts"
INPUT_QUESTION = "question"
INPUT_ANSWER = "answer"
def annotate_dataset(
dataset: Dataset,
context_call: Optional[Callable[[Dict[str, Any]], List[str]]],
answer_call: Optional[Callable[[Dict[str, Any]], str]],
) -> Dataset:
r"""Annotate the dataset by adding context and answers using the provided
functions.
Args:
dataset (Dataset): The input dataset to annotate.
context_call (Optional[Callable[[Dict[str, Any]], List[str]]]):
Function to generate context for each example.
answer_call (Optional[Callable[[Dict[str, Any]], str]]): Function to
generate answer for each example.
Returns:
Dataset: The annotated dataset with added contexts and/or answers.
"""
def process_example(example: Dict[str, Any]) -> Dict[str, Any]:
if context_call:
example["contexts"] = context_call(example)
if answer_call:
example["answer"] = answer_call(example)
return example
return dataset.map(process_example)
def rmse(
input_trues: Sequence[float],
input_preds: Sequence[float],
) -> Optional[float]:
r"""Calculate Root Mean Squared Error (RMSE).
Args:
input_trues (Sequence[float]): Ground truth values.
input_preds (Sequence[float]): Predicted values.
Returns:
Optional[float]: RMSE value, or None if inputs have different lengths.
"""
if len(input_trues) != len(input_preds):
logger.warning("Input lengths mismatch in RMSE calculation")
return None
trues = np.array(input_trues)
preds = np.array(input_preds, dtype=float)
# Ignore NaN values in predictions
eval_idx = ~np.isnan(preds)
if not np.any(eval_idx):
logger.warning("No valid predictions for RMSE calculation")
return None
trues = trues[eval_idx]
preds = preds[eval_idx]
return float(np.sqrt(np.mean((preds - trues) ** 2)))
def auroc(trues: Sequence[bool], preds: Sequence[float]) -> float:
r"""Calculate Area Under Receiver Operating Characteristic Curve (AUROC).
Args:
trues (Sequence[bool]): Ground truth binary values.
preds (Sequence[float]): Predicted probability values.
Returns:
float: AUROC score.
"""
from sklearn.metrics import roc_auc_score # type: ignore[import-untyped]
eval_idx = ~np.isnan(preds)
if not np.any(eval_idx):
logger.warning("No valid predictions for AUROC calculation")
return 0.5 # Return random classifier score
return float(
roc_auc_score(np.array(trues)[eval_idx], np.array(preds)[eval_idx])
)
def ragas_calculate_metrics(
dataset: Dataset,
pred_context_relevance_field: Optional[str],
pred_faithfulness_field: Optional[str],
metrics_to_evaluate: Optional[List[str]] = None,
ground_truth_context_relevance_field: str = "relevance_score",
ground_truth_faithfulness_field: str = "adherence_score",
) -> Dict[str, Optional[float]]:
r"""Calculate RAGAS evaluation metrics.
Args:
dataset (Dataset): The dataset containing predictions and ground truth.
pred_context_relevance_field (Optional[str]): Field name for predicted
context relevance.
pred_faithfulness_field (Optional[str]): Field name for predicted
faithfulness.
metrics_to_evaluate (Optional[List[str]]): List of metrics to evaluate.
ground_truth_context_relevance_field (str): Field name for ground truth
relevance.
ground_truth_faithfulness_field (str): Field name for ground truth
adherence.
Returns:
Dict[str, Optional[float]]: Dictionary of calculated metrics.
"""
metrics_to_evaluate = metrics_to_evaluate or [
"context_relevancy",
"faithfulness",
]
calculated_metrics: Dict[str, Optional[float]] = {}
if (
"context_relevancy" in metrics_to_evaluate
and pred_context_relevance_field
):
trues_relevance = dataset[ground_truth_context_relevance_field]
preds_relevance = dataset[pred_context_relevance_field]
calculated_metrics["relevance_rmse"] = rmse(
trues_relevance, preds_relevance
)
if "faithfulness" in metrics_to_evaluate and pred_faithfulness_field:
trues_hallucination = ~np.array(
dataset[ground_truth_faithfulness_field]
)
preds_hallucination = 1 - np.array(
dataset[pred_faithfulness_field], dtype=float
)
calculated_metrics["hallucination_auroc"] = auroc(
trues_hallucination.tolist(), preds_hallucination.tolist()
)
return calculated_metrics
def ragas_evaluate_dataset(
dataset: Dataset,
contexts_field_name: Optional[str],
answer_field_name: Optional[str],
metrics_to_evaluate: Optional[List[str]] = None,
) -> Dataset:
r"""Evaluate the dataset using RAGAS metrics.
Args:
dataset (Dataset): Input dataset to evaluate.
contexts_field_name (Optional[str]): Field name containing contexts.
answer_field_name (Optional[str]): Field name containing answers.
metrics_to_evaluate (Optional[List[str]]): List of metrics to evaluate.
Returns:
Dataset: Dataset with added evaluation metrics.
"""
from ragas import evaluate
from ragas.metrics import ( # type: ignore[import-untyped]
context_relevancy,
faithfulness,
)
metrics_to_evaluate = metrics_to_evaluate or [
"context_relevancy",
"faithfulness",
]
# Rename fields if necessary
if (
contexts_field_name
and contexts_field_name != RagasFields.INPUT_CONTEXT
):
dataset = dataset.rename_column(
contexts_field_name, RagasFields.INPUT_CONTEXT
)
if answer_field_name and answer_field_name != RagasFields.INPUT_ANSWER:
dataset = dataset.rename_column(
answer_field_name, RagasFields.INPUT_ANSWER
)
metrics = []
if "context_relevancy" in metrics_to_evaluate:
metrics.append(context_relevancy)
if "faithfulness" in metrics_to_evaluate:
metrics.append(faithfulness)
ragas_result = evaluate(dataset, metrics=metrics)
return Dataset.from_pandas(ragas_result.to_pandas())
class RAGBenchBenchmark(BaseBenchmark):
r"""RAGBench Benchmark for evaluating RAG performance.
This benchmark uses the rungalileo/ragbench dataset to evaluate
retrieval-augmented generation (RAG) systems. It measures context
relevancy and faithfulness metrics as described in
https://arxiv.org/abs/2407.11005.
Args:
processes (int, optional): Number of processes for parallel processing.
subset (str, optional): Dataset subset to use (e.g., "hotpotqa").
split (str, optional): Dataset split to use (e.g., "test").
"""
def __init__(
self,
processes: int = 1,
subset: Literal[
"covidqa",
"cuad",
"delucionqa",
"emanual",
"expertqa",
"finqa",
"hagrid",
"hotpotqa",
"msmarco",
"pubmedqa",
"tatqa",
"techqa",
] = "hotpotqa",
split: Literal["train", "test", "validation"] = "test",
) -> None:
super().__init__("ragbench", "rag_bench", "", processes)
self.subset = subset
self.split = split
self.dataset: Optional[Dataset] = None
def download(self):
r"""Download the RAGBench dataset."""
try:
self.dataset = load_dataset(
"rungalileo/ragbench", self.subset, split=self.split
)
except Exception as e:
logger.error(f"Failed to download dataset: {e}")
raise
def load(self, force_download: bool = False):
r"""Load the RAGBench dataset.
Args:
force_download (bool, optional): Whether to force download the
data.
"""
if force_download or self.dataset is None:
logger.info(
"%s dataset",
"Force downloading" if force_download else "Loading",
)
self.download()
def run( # type: ignore[override, return]
self,
agent: ChatAgent,
auto_retriever: AutoRetriever,
) -> Dict[str, Optional[float]]:
r"""Run the benchmark evaluation.
Args:
agent (ChatAgent): Chat agent for generating answers.
auto_retriever (AutoRetriever): Retriever for finding relevant
contexts.
Returns:
Dict[str, Optional[float]]: Dictionary of evaluation metrics.
"""
def context_call(example):
retrieved_info = auto_retriever.run_vector_retriever(
query=example['question'],
contents=example['documents'],
top_k=1,
return_detailed_info=True,
similarity_threshold=0.5,
)
return [c['text'] for c in retrieved_info['Retrieved Context']]
def answer_call(example: Dict[str, Any]) -> str:
user_msg = str(example)
assistant_response = agent.step(user_msg)
return assistant_response.msg.content
# Annotate the dataset
annotated_ds = annotate_dataset(
self.dataset, context_call, answer_call
)
evaluated_ds = ragas_evaluate_dataset(
annotated_ds,
contexts_field_name="contexts",
answer_field_name="answer",
metrics_to_evaluate=["context_relevancy", "faithfulness"],
)
return ragas_calculate_metrics(
evaluated_ds,
pred_context_relevance_field="context_relevancy",
pred_faithfulness_field="faithfulness",
)
|