File size: 8,858 Bytes
fcaa164 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
from typing import Any, Dict, List, Optional, Type, Union
from openai import AsyncOpenAI, AsyncStream, OpenAI, Stream
from pydantic import BaseModel
from camel.messages import OpenAIMessage
from camel.models.base_model import BaseModelBackend
from camel.types import (
ChatCompletion,
ChatCompletionChunk,
ModelType,
)
from camel.utils import (
BaseTokenCounter,
OpenAITokenCounter,
)
class OpenAICompatibleModelV2(BaseModelBackend):
r"""Constructor for model backend supporting OpenAI compatibility.
Args:
model_type (Union[ModelType, str]): Model for which a backend is
created.
model_config_dict (Optional[Dict[str, Any]], optional): A dictionary
that will be fed into:obj:`openai.ChatCompletion.create()`. If
:obj:`None`, :obj:`{}` will be used. (default: :obj:`None`)
api_key (str): The API key for authenticating with the model service.
url (str): The url to the model service.
token_counter (Optional[BaseTokenCounter], optional): Token counter to
use for the model. If not provided, :obj:`OpenAITokenCounter(
ModelType.GPT_4O_MINI)` will be used.
(default: :obj:`None`)
timeout (Optional[float], optional): The timeout value in seconds for
API calls. If not provided, will fall back to the MODEL_TIMEOUT
environment variable or default to 180 seconds.
(default: :obj:`None`)
"""
def __init__(
self,
model_type: Union[ModelType, str],
model_config_dict: Optional[Dict[str, Any]] = None,
api_key: Optional[str] = None,
url: Optional[str] = None,
token_counter: Optional[BaseTokenCounter] = None,
timeout: Optional[float] = None,
) -> None:
api_key = api_key or os.environ.get("OPENAI_COMPATIBILITY_API_KEY")
url = url or os.environ.get("OPENAI_COMPATIBILITY_API_BASE_URL")
timeout = timeout or float(os.environ.get("MODEL_TIMEOUT", 180))
super().__init__(
model_type, model_config_dict, api_key, url, token_counter
)
self._timeout = timeout
self._client = OpenAI(
timeout=self._timeout,
max_retries=3,
api_key=self._api_key,
base_url=self._url,
)
self._async_client = AsyncOpenAI(
timeout=self._timeout,
max_retries=3,
api_key=self._api_key,
base_url=self._url,
)
def _run(
self,
messages: List[OpenAIMessage],
response_format: Optional[Type[BaseModel]] = None,
tools: Optional[List[Dict[str, Any]]] = None,
) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]:
r"""Runs inference of OpenAI chat completion.
Args:
messages (List[OpenAIMessage]): Message list with the chat history
in OpenAI API format.
response_format (Optional[Type[BaseModel]]): The format of the
response.
tools (Optional[List[Dict[str, Any]]]): The schema of the tools to
use for the request.
Returns:
Union[ChatCompletion, Stream[ChatCompletionChunk]]:
`ChatCompletion` in the non-stream mode, or
`Stream[ChatCompletionChunk]` in the stream mode.
"""
response_format = response_format or self.model_config_dict.get(
"response_format", None
)
if response_format:
return self._request_parse(messages, response_format, tools)
else:
return self._request_chat_completion(messages, tools)
async def _arun(
self,
messages: List[OpenAIMessage],
response_format: Optional[Type[BaseModel]] = None,
tools: Optional[List[Dict[str, Any]]] = None,
) -> Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]:
r"""Runs inference of OpenAI chat completion in async mode.
Args:
messages (List[OpenAIMessage]): Message list with the chat history
in OpenAI API format.
response_format (Optional[Type[BaseModel]]): The format of the
response.
tools (Optional[List[Dict[str, Any]]]): The schema of the tools to
use for the request.
Returns:
Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]:
`ChatCompletion` in the non-stream mode, or
`AsyncStream[ChatCompletionChunk]` in the stream mode.
"""
response_format = response_format or self.model_config_dict.get(
"response_format", None
)
if response_format:
return await self._arequest_parse(messages, response_format, tools)
else:
return await self._arequest_chat_completion(messages, tools)
def _request_chat_completion(
self,
messages: List[OpenAIMessage],
tools: Optional[List[Dict[str, Any]]] = None,
) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]:
request_config = self.model_config_dict.copy()
if tools:
request_config["tools"] = tools
return self._client.chat.completions.create(
messages=messages,
model=self.model_type,
**request_config,
)
async def _arequest_chat_completion(
self,
messages: List[OpenAIMessage],
tools: Optional[List[Dict[str, Any]]] = None,
) -> Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]:
request_config = self.model_config_dict.copy()
if tools:
request_config["tools"] = tools
return await self._async_client.chat.completions.create(
messages=messages,
model=self.model_type,
**request_config,
)
def _request_parse(
self,
messages: List[OpenAIMessage],
response_format: Type[BaseModel],
tools: Optional[List[Dict[str, Any]]] = None,
) -> ChatCompletion:
import copy
request_config = copy.deepcopy(self.model_config_dict)
# Remove stream from request_config since OpenAI does not support it
# when structured response is used
request_config["response_format"] = response_format
request_config.pop("stream", None)
if tools is not None:
request_config["tools"] = tools
return self._client.beta.chat.completions.parse(
messages=messages,
model=self.model_type,
**request_config,
)
async def _arequest_parse(
self,
messages: List[OpenAIMessage],
response_format: Type[BaseModel],
tools: Optional[List[Dict[str, Any]]] = None,
) -> ChatCompletion:
import copy
request_config = copy.deepcopy(self.model_config_dict)
# Remove stream from request_config since OpenAI does not support it
# when structured response is used
request_config["response_format"] = response_format
request_config.pop("stream", None)
if tools is not None:
request_config["tools"] = tools
return await self._async_client.beta.chat.completions.parse(
messages=messages,
model=self.model_type,
**request_config,
)
@property
def token_counter(self) -> BaseTokenCounter:
r"""Initialize the token counter for the model backend.
Returns:
OpenAITokenCounter: The token counter following the model's
tokenization style.
"""
if not self._token_counter:
self._token_counter = OpenAITokenCounter(ModelType.GPT_4O_MINI)
return self._token_counter
@property
def stream(self) -> bool:
r"""Returns whether the model is in stream mode, which sends partial
results each time.
Returns:
bool: Whether the model is in stream mode.
"""
return self.model_config_dict.get('stream', False)
def check_model_config(self):
pass
|