File size: 8,858 Bytes
fcaa164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========

import os
from typing import Any, Dict, List, Optional, Type, Union

from openai import AsyncOpenAI, AsyncStream, OpenAI, Stream
from pydantic import BaseModel

from camel.messages import OpenAIMessage
from camel.models.base_model import BaseModelBackend
from camel.types import (
    ChatCompletion,
    ChatCompletionChunk,
    ModelType,
)
from camel.utils import (
    BaseTokenCounter,
    OpenAITokenCounter,
)


class OpenAICompatibleModelV2(BaseModelBackend):
    r"""Constructor for model backend supporting OpenAI compatibility.

    Args:
        model_type (Union[ModelType, str]): Model for which a backend is
            created.
        model_config_dict (Optional[Dict[str, Any]], optional): A dictionary
            that will be fed into:obj:`openai.ChatCompletion.create()`. If
            :obj:`None`, :obj:`{}` will be used. (default: :obj:`None`)
        api_key (str): The API key for authenticating with the model service.
        url (str): The url to the model service.
        token_counter (Optional[BaseTokenCounter], optional): Token counter to
            use for the model. If not provided, :obj:`OpenAITokenCounter(
            ModelType.GPT_4O_MINI)` will be used.
            (default: :obj:`None`)
        timeout (Optional[float], optional): The timeout value in seconds for
            API calls. If not provided, will fall back to the MODEL_TIMEOUT
            environment variable or default to 180 seconds.
            (default: :obj:`None`)
    """

    def __init__(
        self,
        model_type: Union[ModelType, str],
        model_config_dict: Optional[Dict[str, Any]] = None,
        api_key: Optional[str] = None,
        url: Optional[str] = None,
        token_counter: Optional[BaseTokenCounter] = None,
        timeout: Optional[float] = None,
    ) -> None:
        api_key = api_key or os.environ.get("OPENAI_COMPATIBILITY_API_KEY")
        url = url or os.environ.get("OPENAI_COMPATIBILITY_API_BASE_URL")
        timeout = timeout or float(os.environ.get("MODEL_TIMEOUT", 180))
        super().__init__(
            model_type, model_config_dict, api_key, url, token_counter
        )
        self._timeout = timeout
        self._client = OpenAI(
            timeout=self._timeout,
            max_retries=3,
            api_key=self._api_key,
            base_url=self._url,
        )

        self._async_client = AsyncOpenAI(
            timeout=self._timeout,
            max_retries=3,
            api_key=self._api_key,
            base_url=self._url,
        )

    def _run(
        self,
        messages: List[OpenAIMessage],
        response_format: Optional[Type[BaseModel]] = None,
        tools: Optional[List[Dict[str, Any]]] = None,
    ) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]:
        r"""Runs inference of OpenAI chat completion.

        Args:
            messages (List[OpenAIMessage]): Message list with the chat history
                in OpenAI API format.
            response_format (Optional[Type[BaseModel]]): The format of the
                response.
            tools (Optional[List[Dict[str, Any]]]): The schema of the tools to
                use for the request.

        Returns:
            Union[ChatCompletion, Stream[ChatCompletionChunk]]:
                `ChatCompletion` in the non-stream mode, or
                `Stream[ChatCompletionChunk]` in the stream mode.
        """
        response_format = response_format or self.model_config_dict.get(
            "response_format", None
        )
        if response_format:
            return self._request_parse(messages, response_format, tools)
        else:
            return self._request_chat_completion(messages, tools)

    async def _arun(
        self,
        messages: List[OpenAIMessage],
        response_format: Optional[Type[BaseModel]] = None,
        tools: Optional[List[Dict[str, Any]]] = None,
    ) -> Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]:
        r"""Runs inference of OpenAI chat completion in async mode.

        Args:
            messages (List[OpenAIMessage]): Message list with the chat history
                in OpenAI API format.
            response_format (Optional[Type[BaseModel]]): The format of the
                response.
            tools (Optional[List[Dict[str, Any]]]): The schema of the tools to
                use for the request.

        Returns:
            Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]:
                `ChatCompletion` in the non-stream mode, or
                `AsyncStream[ChatCompletionChunk]` in the stream mode.
        """
        response_format = response_format or self.model_config_dict.get(
            "response_format", None
        )
        if response_format:
            return await self._arequest_parse(messages, response_format, tools)
        else:
            return await self._arequest_chat_completion(messages, tools)

    def _request_chat_completion(
        self,
        messages: List[OpenAIMessage],
        tools: Optional[List[Dict[str, Any]]] = None,
    ) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]:
        request_config = self.model_config_dict.copy()

        if tools:
            request_config["tools"] = tools

        return self._client.chat.completions.create(
            messages=messages,
            model=self.model_type,
            **request_config,
        )

    async def _arequest_chat_completion(
        self,
        messages: List[OpenAIMessage],
        tools: Optional[List[Dict[str, Any]]] = None,
    ) -> Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]:
        request_config = self.model_config_dict.copy()

        if tools:
            request_config["tools"] = tools

        return await self._async_client.chat.completions.create(
            messages=messages,
            model=self.model_type,
            **request_config,
        )

    def _request_parse(
        self,
        messages: List[OpenAIMessage],
        response_format: Type[BaseModel],
        tools: Optional[List[Dict[str, Any]]] = None,
    ) -> ChatCompletion:
        import copy

        request_config = copy.deepcopy(self.model_config_dict)
        # Remove stream from request_config since OpenAI does not support it
        # when structured response is used
        request_config["response_format"] = response_format
        request_config.pop("stream", None)
        if tools is not None:
            request_config["tools"] = tools

        return self._client.beta.chat.completions.parse(
            messages=messages,
            model=self.model_type,
            **request_config,
        )

    async def _arequest_parse(
        self,
        messages: List[OpenAIMessage],
        response_format: Type[BaseModel],
        tools: Optional[List[Dict[str, Any]]] = None,
    ) -> ChatCompletion:
        import copy

        request_config = copy.deepcopy(self.model_config_dict)
        # Remove stream from request_config since OpenAI does not support it
        # when structured response is used
        request_config["response_format"] = response_format
        request_config.pop("stream", None)
        if tools is not None:
            request_config["tools"] = tools

        return await self._async_client.beta.chat.completions.parse(
            messages=messages,
            model=self.model_type,
            **request_config,
        )

    @property
    def token_counter(self) -> BaseTokenCounter:
        r"""Initialize the token counter for the model backend.

        Returns:
            OpenAITokenCounter: The token counter following the model's
                tokenization style.
        """

        if not self._token_counter:
            self._token_counter = OpenAITokenCounter(ModelType.GPT_4O_MINI)
        return self._token_counter

    @property
    def stream(self) -> bool:
        r"""Returns whether the model is in stream mode, which sends partial
        results each time.

        Returns:
            bool: Whether the model is in stream mode.
        """
        return self.model_config_dict.get('stream', False)

    def check_model_config(self):
        pass