File size: 8,655 Bytes
fcaa164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import logging
import random
from io import BytesIO
from pathlib import Path
from typing import TYPE_CHECKING, Iterable, List, Optional, Union

import pypdfium2 as pdfium
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling_parse.pdf_parsers import pdf_parser_v2
from PIL import Image, ImageDraw
from pypdfium2 import PdfPage

from docling.backend.pdf_backend import PdfDocumentBackend, PdfPageBackend
from docling.datamodel.base_models import Cell, Size

if TYPE_CHECKING:
    from docling.datamodel.document import InputDocument

_log = logging.getLogger(__name__)


class DoclingParseV2PageBackend(PdfPageBackend):
    def __init__(
        self, parser: pdf_parser_v2, document_hash: str, page_no: int, page_obj: PdfPage
    ):
        self._ppage = page_obj
        parsed_page = parser.parse_pdf_from_key_on_page(document_hash, page_no)

        self.valid = "pages" in parsed_page and len(parsed_page["pages"]) == 1
        if self.valid:
            self._dpage = parsed_page["pages"][0]
        else:
            _log.info(
                f"An error occurred when loading page {page_no} of document {document_hash}."
            )

    def is_valid(self) -> bool:
        return self.valid

    def get_text_in_rect(self, bbox: BoundingBox) -> str:
        if not self.valid:
            return ""
        # Find intersecting cells on the page
        text_piece = ""
        page_size = self.get_size()

        parser_width = self._dpage["sanitized"]["dimension"]["width"]
        parser_height = self._dpage["sanitized"]["dimension"]["height"]

        scale = (
            1  # FIX - Replace with param in get_text_in_rect across backends (optional)
        )

        cells_data = self._dpage["sanitized"]["cells"]["data"]
        cells_header = self._dpage["sanitized"]["cells"]["header"]

        for i, cell_data in enumerate(cells_data):
            x0 = cell_data[cells_header.index("x0")]
            y0 = cell_data[cells_header.index("y0")]
            x1 = cell_data[cells_header.index("x1")]
            y1 = cell_data[cells_header.index("y1")]

            cell_bbox = BoundingBox(
                l=x0 * scale * page_size.width / parser_width,
                b=y0 * scale * page_size.height / parser_height,
                r=x1 * scale * page_size.width / parser_width,
                t=y1 * scale * page_size.height / parser_height,
                coord_origin=CoordOrigin.BOTTOMLEFT,
            ).to_top_left_origin(page_height=page_size.height * scale)

            overlap_frac = cell_bbox.intersection_area_with(bbox) / cell_bbox.area()

            if overlap_frac > 0.5:
                if len(text_piece) > 0:
                    text_piece += " "
                text_piece += cell_data[cells_header.index("text")]

        return text_piece

    def get_text_cells(self) -> Iterable[Cell]:
        cells: List[Cell] = []
        cell_counter = 0

        if not self.valid:
            return cells

        page_size = self.get_size()

        parser_width = self._dpage["sanitized"]["dimension"]["width"]
        parser_height = self._dpage["sanitized"]["dimension"]["height"]

        cells_data = self._dpage["sanitized"]["cells"]["data"]
        cells_header = self._dpage["sanitized"]["cells"]["header"]

        for i, cell_data in enumerate(cells_data):
            x0 = cell_data[cells_header.index("x0")]
            y0 = cell_data[cells_header.index("y0")]
            x1 = cell_data[cells_header.index("x1")]
            y1 = cell_data[cells_header.index("y1")]

            if x1 < x0:
                x0, x1 = x1, x0
            if y1 < y0:
                y0, y1 = y1, y0

            text_piece = cell_data[cells_header.index("text")]
            cells.append(
                Cell(
                    id=cell_counter,
                    text=text_piece,
                    bbox=BoundingBox(
                        # l=x0, b=y0, r=x1, t=y1,
                        l=x0 * page_size.width / parser_width,
                        b=y0 * page_size.height / parser_height,
                        r=x1 * page_size.width / parser_width,
                        t=y1 * page_size.height / parser_height,
                        coord_origin=CoordOrigin.BOTTOMLEFT,
                    ).to_top_left_origin(page_size.height),
                )
            )
            cell_counter += 1

        def draw_clusters_and_cells():
            image = (
                self.get_page_image()
            )  # make new image to avoid drawing on the saved ones
            draw = ImageDraw.Draw(image)
            for c in cells:
                x0, y0, x1, y1 = c.bbox.as_tuple()
                cell_color = (
                    random.randint(30, 140),
                    random.randint(30, 140),
                    random.randint(30, 140),
                )
                draw.rectangle([(x0, y0), (x1, y1)], outline=cell_color)
            image.show()

        # draw_clusters_and_cells()

        return cells

    def get_bitmap_rects(self, scale: float = 1) -> Iterable[BoundingBox]:
        AREA_THRESHOLD = 0  # 32 * 32

        images = self._dpage["sanitized"]["images"]["data"]
        images_header = self._dpage["sanitized"]["images"]["header"]

        for row in images:
            x0 = row[images_header.index("x0")]
            y0 = row[images_header.index("y0")]
            x1 = row[images_header.index("x1")]
            y1 = row[images_header.index("y1")]

            cropbox = BoundingBox.from_tuple(
                (x0, y0, x1, y1), origin=CoordOrigin.BOTTOMLEFT
            ).to_top_left_origin(self.get_size().height)

            if cropbox.area() > AREA_THRESHOLD:
                cropbox = cropbox.scaled(scale=scale)

                yield cropbox

    def get_page_image(
        self, scale: float = 1, cropbox: Optional[BoundingBox] = None
    ) -> Image.Image:

        page_size = self.get_size()

        if not cropbox:
            cropbox = BoundingBox(
                l=0,
                r=page_size.width,
                t=0,
                b=page_size.height,
                coord_origin=CoordOrigin.TOPLEFT,
            )
            padbox = BoundingBox(
                l=0, r=0, t=0, b=0, coord_origin=CoordOrigin.BOTTOMLEFT
            )
        else:
            padbox = cropbox.to_bottom_left_origin(page_size.height).model_copy()
            padbox.r = page_size.width - padbox.r
            padbox.t = page_size.height - padbox.t

        image = (
            self._ppage.render(
                scale=scale * 1.5,
                rotation=0,  # no additional rotation
                crop=padbox.as_tuple(),
            )
            .to_pil()
            .resize(size=(round(cropbox.width * scale), round(cropbox.height * scale)))
        )  # We resize the image from 1.5x the given scale to make it sharper.

        return image

    def get_size(self) -> Size:
        return Size(width=self._ppage.get_width(), height=self._ppage.get_height())

    def unload(self):
        self._ppage = None
        self._dpage = None


class DoclingParseV2DocumentBackend(PdfDocumentBackend):
    def __init__(self, in_doc: "InputDocument", path_or_stream: Union[BytesIO, Path]):
        super().__init__(in_doc, path_or_stream)

        self._pdoc = pdfium.PdfDocument(self.path_or_stream)
        self.parser = pdf_parser_v2("fatal")

        success = False
        if isinstance(self.path_or_stream, BytesIO):
            success = self.parser.load_document_from_bytesio(
                self.document_hash, self.path_or_stream
            )
        elif isinstance(self.path_or_stream, Path):
            success = self.parser.load_document(
                self.document_hash, str(self.path_or_stream)
            )

        if not success:
            raise RuntimeError(
                f"docling-parse v2 could not load document {self.document_hash}."
            )

    def page_count(self) -> int:
        # return len(self._pdoc)  # To be replaced with docling-parse API

        len_1 = len(self._pdoc)
        len_2 = self.parser.number_of_pages(self.document_hash)

        if len_1 != len_2:
            _log.error(f"Inconsistent number of pages: {len_1}!={len_2}")

        return len_2

    def load_page(self, page_no: int) -> DoclingParseV2PageBackend:
        return DoclingParseV2PageBackend(
            self.parser, self.document_hash, page_no, self._pdoc[page_no]
        )

    def is_valid(self) -> bool:
        return self.page_count() > 0

    def unload(self):
        super().unload()
        self.parser.unload_document(self.document_hash)
        self._pdoc.close()
        self._pdoc = None