File size: 9,565 Bytes
fcaa164 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import glob
import json
import multiprocessing
import os
import re
import shutil
import sys
import traceback
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from functools import partial
import torch
from FlagEmbedding import BGEM3FlagModel
from jinja2 import Template
from tqdm import tqdm
os.environ['OPENAI_API_KEY'] = 'Your key here'
root_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '../..'))
sys.path.insert(0, root_dir)
import src.llms as llms
from src.induct import SlideInducter
from src.model_utils import (
get_image_embedding,
get_image_model,
images_cosine_similarity,
parse_pdf,
prs_dedup,
)
from src.multimodal import ImageLabler
from src.presentation import Picture, Presentation, SlidePage
from src.utils import Config, older_than, pexists, pjoin, ppt_to_images
markdown_clean_pattern = re.compile(r"!\[.*?\]\((.*?)\)")
device_count = torch.cuda.device_count()
def rm_folder(folder: str):
try:
shutil.rmtree(folder)
except:
for i in os.listdir(folder):
try:
rm_folder(pjoin(folder, i))
except:
pass
def process_filetype(file_type: str, func: callable, thread_num: int, topic="*"):
folders = glob.glob(f"data/{topic}/{file_type}/*")
progress_bar = tqdm(total=len(folders), desc=f"processing {file_type}")
def process_folder(folder, *args, **kwargs):
try:
func(folder, *args, **kwargs)
except Exception as e:
print(f"process {file_type} folder {folder} failed: {e}")
traceback.print_exc()
finally:
progress_bar.update(1)
with ThreadPoolExecutor(thread_num) as executor:
list(executor.map(process_folder, folders, range(len(folders))))
progress_bar.close()
def parse_pdfs(pdf_folders: list[str], idx: int):
# require numpy==1.26.0, which is conflict with other packages
from marker.models import create_model_dict
model = create_model_dict(device=idx % device_count, dtype=torch.float16)
for pdf_folder in pdf_folders:
if not older_than(pdf_folder + "/original.pdf"):
continue
if not pexists(pjoin(pdf_folder, "source.md")):
text_content = parse_pdf(
pdf_folder + "/original.pdf",
pdf_folder,
model,
)
if len(text_content) < 512:
rm_folder(pdf_folder)
continue
def prepare_pdf_folder(pdf_folder: str, rank: int):
image_model = get_image_model(f"cuda:{rank % device_count}")
if not pexists(pjoin(pdf_folder, "source.md")):
return
if not pexists(pjoin(pdf_folder, "image_caption.json")):
images_embeddings = get_image_embedding(pdf_folder, *image_model)
images = [pjoin(pdf_folder, image) for image in images_embeddings]
if len(images_embeddings) == 0:
rm_folder(pdf_folder)
return
similarity_matrix = images_cosine_similarity(list(images_embeddings.values()))
for i in range(len(similarity_matrix)):
for j in range(i + 1, len(similarity_matrix)):
if similarity_matrix[i][j] > 0.85:
if pexists(images[i]):
os.remove(images[i])
break
images = [image for image in images if pexists(image)]
image_stats = {}
caption_prompt = open("prompts/caption.txt").read()
for image in images:
image_stats[image] = llms.vision_model(caption_prompt, image)
print(image_stats[image])
with open(pjoin(pdf_folder, "image_caption.json"), mode="w") as f:
json.dump(image_stats, f, indent=4, ensure_ascii=False)
if not pexists(pjoin(pdf_folder, "refined_doc.json")):
text_content = open(pjoin(pdf_folder, "source.md")).read()
text_content = markdown_clean_pattern.sub("", text_content)
template = Template(open("prompts/document_refine.txt").read())
doc_json = llms.language_model(
template.render(markdown_document=text_content), return_json=True
)
json.dump(
doc_json,
open(pjoin(pdf_folder, "refined_doc.json"), "w"),
indent=4,
ensure_ascii=False,
)
def filter_slide(slide: SlidePage):
num_pictures = len(list(slide.shape_filter(Picture)))
num_shapes = len(slide.shapes)
if num_shapes > 10:
return True
if num_shapes - num_pictures < 2:
return True
if slide.real_idx != 0 and num_pictures > 2:
return True
def I_dont_want_to_filter_slide(slide: SlidePage):
return False
def check_consistency(slides: list[SlidePage], ppt_folder: str, image_model):
original_embeddings = get_image_embedding(
pjoin(ppt_folder, "original_slides"), *image_model
)
rebuild_embeddings = get_image_embedding(
pjoin(ppt_folder, "source_slides"), *image_model
)
for slide in slides:
if (
torch.cosine_similarity(
original_embeddings[f"slide_{slide.real_idx:04d}.jpg"],
rebuild_embeddings[f"slide_{slide.slide_idx:04d}.jpg"],
dim=-1,
)
< 0.9
):
raise ValueError(f"slide {slide.real_idx} in {ppt_folder} is inconsistent")
return True
def prepare_ppt_folder(ppt_folder: str, text_model: BGEM3FlagModel, image_model):
if pexists(ppt_folder + "/source.pptx") or not older_than(
ppt_folder + "/original.pptx"
):
return
config = Config(rundir=ppt_folder, debug=False)
presentation = Presentation.from_file(ppt_folder + "/original.pptx", config=config)
if not os.path.exists(pjoin(ppt_folder, "original_slides")):
ppt_to_images(presentation.source_file, pjoin(ppt_folder, "original_slides"))
ppt_image_folder = pjoin(ppt_folder, "source_slides")
shutil.rmtree(ppt_image_folder, ignore_errors=True)
shutil.copytree(pjoin(ppt_folder, "original_slides"), ppt_image_folder)
removed_slides = prs_dedup(presentation, text_model)
for slide in [slide for slide in presentation.slides if I_dont_want_to_filter_slide(slide)]:
removed_slides.append(slide)
presentation.slides.remove(slide)
for slide in removed_slides:
os.remove(pjoin(ppt_image_folder, f"slide_{slide.real_idx:04d}.jpg"))
for err_idx, _ in presentation.error_history:
os.remove(pjoin(ppt_image_folder, f"slide_{err_idx:04d}.jpg"))
assert len(presentation) == len(
[i for i in os.listdir(ppt_image_folder) if i.endswith(".jpg")]
)
for i, slide in enumerate(presentation.slides, 1):
slide.slide_idx = i
os.rename(
pjoin(ppt_image_folder, f"slide_{slide.real_idx:04d}.jpg"),
pjoin(ppt_image_folder, f"slide_{slide.slide_idx:04d}.jpg"),
)
check_consistency(presentation.slides, ppt_folder, image_model)
ImageLabler(presentation, config).caption_images()
presentation.save(pjoin(ppt_folder, "source.pptx"))
presentation.save(pjoin(ppt_folder, "template.pptx"), layout_only=True)
ppt_to_images(
pjoin(ppt_folder, "template.pptx"),
pjoin(ppt_folder, "template_images"),
)
os.remove(pjoin(ppt_folder, "template.pptx"))
def prepare_induction(induct_id: int, wait: bool = False):
induct_llms = [
(llms.qwen2_5, llms.qwen_vl),
(llms.gpt4o, llms.gpt4o),
(llms.qwen_vl, llms.qwen_vl),
]
def do_induct(llm: list[llms.LLM], ppt_folder: str, rank: int):
if not older_than(pjoin(ppt_folder, "source.pptx"), wait=wait):
return
llms.language_model = llm[0]
llms.vision_model = llm[1]
config = Config(rundir=ppt_folder)
ppt_image_folder = pjoin(ppt_folder, "source_slides")
template_image_folder = pjoin(ppt_folder, "template_images")
image_model = get_image_model(f"cuda:{rank % device_count}")
presentation = Presentation.from_file(pjoin(ppt_folder, "source.pptx"), config)
ImageLabler(presentation, config).caption_images()
slide_inducter = SlideInducter(
presentation, ppt_image_folder, template_image_folder, config, image_model
)
slide_inducter.content_induct()
for folder in tqdm(sorted(glob.glob("data/*/pptx/*")), desc="prepare induction"):
do_induct(induct_llms[induct_id], folder, 0)
if __name__ == "__main__":
if sys.argv[1] == "prepare_ppt":
text_model = BGEM3FlagModel("BAAI/bge-m3", use_fp16=True, device=0)
image_model = get_image_model(0)
for ppt_folder in tqdm(glob.glob("data/*/pptx/*"), desc="prepare ppt"):
prepare_ppt_folder(ppt_folder, text_model, image_model)
elif sys.argv[1] == "prepare_induction":
prepare_induction(int(sys.argv[2]))
elif sys.argv[1] == "parse_pdf":
multiprocessing.set_start_method("spawn", force=True)
num_process = int(sys.argv[2])
with ProcessPoolExecutor(max_workers=num_process) as executor:
folders = glob.glob("data/*/pdf/*")
subfolders = [[] for _ in range(num_process)]
for idx, folder in enumerate(folders):
subfolders[idx % num_process].append(folder)
list(executor.map(parse_pdfs, subfolders, range(num_process)))
elif sys.argv[1] == "prepare_pdf":
prepare_pdf_folder = partial(prepare_pdf_folder)
process_filetype("pdf", prepare_pdf_folder, int(sys.argv[2]))
|