File size: 7,128 Bytes
fcaa164 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from __future__ import annotations
import json
from typing import Dict, List, Optional
from colorama import Fore
from camel.agents.chat_agent import ChatAgent
from camel.messages.base import BaseMessage
from camel.societies import RolePlaying
from camel.societies.workforce.prompts import (
ROLEPLAY_PROCESS_TASK_PROMPT,
ROLEPLAY_SUMMARIZE_PROMPT,
)
from camel.societies.workforce.utils import TaskResult
from camel.societies.workforce.worker import Worker
from camel.tasks.task import Task, TaskState
from camel.utils import print_text_animated
class RolePlayingWorker(Worker):
r"""A worker node that contains a role playing.
Args:
description (str): Description of the node.
assistant_role_name (str): The role name of the assistant agent.
user_role_name (str): The role name of the user agent.
assistant_agent_kwargs (Optional[Dict], optional): The keyword
arguments to initialize the assistant agent in the role playing,
like the model name, etc. Defaults to None.
user_agent_kwargs (Optional[Dict], optional): The keyword arguments to
initialize the user agent in the role playing, like the model name,
etc. Defaults to None.
chat_turn_limit (int, optional): The maximum number of chat turns in
the role playing. Defaults to 3.
"""
def __init__(
self,
description: str,
assistant_role_name: str,
user_role_name: str,
assistant_agent_kwargs: Optional[Dict] = None,
user_agent_kwargs: Optional[Dict] = None,
chat_turn_limit: int = 3,
) -> None:
super().__init__(description)
summ_sys_msg = BaseMessage.make_assistant_message(
role_name="Summarizer",
content="You are a good summarizer. You will be presented with "
"scenarios where an assistant and a user with specific roles "
"are trying to solve a task. Your job is summarizing the result "
"of the task based on the chat history.",
)
self.summarize_agent = ChatAgent(summ_sys_msg)
self.chat_turn_limit = chat_turn_limit
self.assistant_role_name = assistant_role_name
self.user_role_name = user_role_name
self.assistant_agent_kwargs = assistant_agent_kwargs
self.user_agent_kwargs = user_agent_kwargs
async def _process_task(
self, task: Task, dependencies: List[Task]
) -> TaskState:
r"""Processes a task leveraging its dependencies through role-playing.
This method orchestrates a role-playing session between an AI
assistant and an AI user to process a given task. It initiates with a
generated prompt based on the task and its dependencies, conducts a
dialogue up to a specified chat turn limit, and then summarizes the
dialogue to determine the task's outcome.
Args:
task (Task): The task object to be processed, containing necessary
details like content and type.
dependencies (List[Task]): A list of task objects that the current
task depends on.
Returns:
TaskState: `TaskState.DONE` if processed successfully, otherwise
`TaskState.FAILED`.
"""
dependency_tasks_info = self._get_dep_tasks_info(dependencies)
prompt = ROLEPLAY_PROCESS_TASK_PROMPT.format(
content=task.content,
dependency_task_info=dependency_tasks_info,
additional_info=task.additional_info,
)
role_play_session = RolePlaying(
assistant_role_name=self.assistant_role_name,
user_role_name=self.user_role_name,
assistant_agent_kwargs=self.assistant_agent_kwargs,
user_agent_kwargs=self.user_agent_kwargs,
task_prompt=prompt,
with_task_specify=False,
)
n = 0
input_msg = role_play_session.init_chat()
chat_history = []
while n < self.chat_turn_limit:
n += 1
assistant_response, user_response = role_play_session.step(
input_msg
)
if assistant_response.terminated:
reason = assistant_response.info['termination_reasons']
print(
f"{Fore.GREEN}AI Assistant terminated. Reason: "
f"{reason}.{Fore.RESET}"
)
break
if user_response.terminated:
reason = user_response.info['termination_reasons']
print(
f"{Fore.GREEN}AI User terminated. Reason: {reason}."
f"{Fore.RESET}"
)
break
print_text_animated(
f"{Fore.BLUE}AI User:\n\n{user_response.msg.content}"
f"{Fore.RESET}\n",
delay=0.005,
)
chat_history.append(f"AI User: {user_response.msg.content}")
print_text_animated(
f"{Fore.GREEN}AI Assistant:{Fore.RESET}", delay=0.005
)
for func_record in assistant_response.info['tool_calls']:
print(func_record)
print_text_animated(
f"\n{Fore.GREEN}{assistant_response.msg.content}"
f"{Fore.RESET}\n",
delay=0.005,
)
chat_history.append(
f"AI Assistant: {assistant_response.msg.content}"
)
if "CAMEL_TASK_DONE" in user_response.msg.content:
break
input_msg = assistant_response.msg
chat_history_str = "\n".join(chat_history)
prompt = ROLEPLAY_SUMMARIZE_PROMPT.format(
user_role=self.user_role_name,
assistant_role=self.assistant_role_name,
content=task.content,
chat_history=chat_history_str,
additional_info=task.additional_info,
)
req = BaseMessage.make_user_message(
role_name="User",
content=prompt,
)
response = self.summarize_agent.step(req, response_format=TaskResult)
result_dict = json.loads(response.msg.content)
task_result = TaskResult(**result_dict)
task.result = task_result.content
print(f"Task result: {task.result}\n")
return TaskState.DONE
|