File size: 7,128 Bytes
fcaa164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from __future__ import annotations

import json
from typing import Dict, List, Optional

from colorama import Fore

from camel.agents.chat_agent import ChatAgent
from camel.messages.base import BaseMessage
from camel.societies import RolePlaying
from camel.societies.workforce.prompts import (
    ROLEPLAY_PROCESS_TASK_PROMPT,
    ROLEPLAY_SUMMARIZE_PROMPT,
)
from camel.societies.workforce.utils import TaskResult
from camel.societies.workforce.worker import Worker
from camel.tasks.task import Task, TaskState
from camel.utils import print_text_animated


class RolePlayingWorker(Worker):
    r"""A worker node that contains a role playing.

    Args:
        description (str): Description of the node.
        assistant_role_name (str): The role name of the assistant agent.
        user_role_name (str): The role name of the user agent.
        assistant_agent_kwargs (Optional[Dict], optional): The keyword
            arguments to initialize the assistant agent in the role playing,
            like the model name, etc. Defaults to None.
        user_agent_kwargs (Optional[Dict], optional): The keyword arguments to
            initialize the user agent in the role playing, like the model name,
            etc. Defaults to None.
        chat_turn_limit (int, optional): The maximum number of chat turns in
            the role playing. Defaults to 3.
    """

    def __init__(
        self,
        description: str,
        assistant_role_name: str,
        user_role_name: str,
        assistant_agent_kwargs: Optional[Dict] = None,
        user_agent_kwargs: Optional[Dict] = None,
        chat_turn_limit: int = 3,
    ) -> None:
        super().__init__(description)
        summ_sys_msg = BaseMessage.make_assistant_message(
            role_name="Summarizer",
            content="You are a good summarizer. You will be presented with "
            "scenarios where an assistant and a user with specific roles "
            "are trying to solve a task. Your job is summarizing the result "
            "of the task based on the chat history.",
        )
        self.summarize_agent = ChatAgent(summ_sys_msg)
        self.chat_turn_limit = chat_turn_limit
        self.assistant_role_name = assistant_role_name
        self.user_role_name = user_role_name
        self.assistant_agent_kwargs = assistant_agent_kwargs
        self.user_agent_kwargs = user_agent_kwargs

    async def _process_task(
        self, task: Task, dependencies: List[Task]
    ) -> TaskState:
        r"""Processes a task leveraging its dependencies through role-playing.

        This method orchestrates a role-playing session between an AI
        assistant and an AI user to process a given task. It initiates with a
        generated prompt based on the task and its dependencies, conducts a
        dialogue up to a specified chat turn limit, and then summarizes the
        dialogue to determine the task's outcome.

        Args:
            task (Task): The task object to be processed, containing necessary
                details like content and type.
            dependencies (List[Task]): A list of task objects that the current
                task depends on.

        Returns:
            TaskState: `TaskState.DONE` if processed successfully, otherwise
                `TaskState.FAILED`.
        """
        dependency_tasks_info = self._get_dep_tasks_info(dependencies)
        prompt = ROLEPLAY_PROCESS_TASK_PROMPT.format(
            content=task.content,
            dependency_task_info=dependency_tasks_info,
            additional_info=task.additional_info,
        )
        role_play_session = RolePlaying(
            assistant_role_name=self.assistant_role_name,
            user_role_name=self.user_role_name,
            assistant_agent_kwargs=self.assistant_agent_kwargs,
            user_agent_kwargs=self.user_agent_kwargs,
            task_prompt=prompt,
            with_task_specify=False,
        )
        n = 0
        input_msg = role_play_session.init_chat()
        chat_history = []
        while n < self.chat_turn_limit:
            n += 1
            assistant_response, user_response = role_play_session.step(
                input_msg
            )

            if assistant_response.terminated:
                reason = assistant_response.info['termination_reasons']
                print(
                    f"{Fore.GREEN}AI Assistant terminated. Reason: "
                    f"{reason}.{Fore.RESET}"
                )
                break

            if user_response.terminated:
                reason = user_response.info['termination_reasons']
                print(
                    f"{Fore.GREEN}AI User terminated. Reason: {reason}."
                    f"{Fore.RESET}"
                )
                break

            print_text_animated(
                f"{Fore.BLUE}AI User:\n\n{user_response.msg.content}"
                f"{Fore.RESET}\n",
                delay=0.005,
            )
            chat_history.append(f"AI User: {user_response.msg.content}")

            print_text_animated(
                f"{Fore.GREEN}AI Assistant:{Fore.RESET}", delay=0.005
            )

            for func_record in assistant_response.info['tool_calls']:
                print(func_record)

            print_text_animated(
                f"\n{Fore.GREEN}{assistant_response.msg.content}"
                f"{Fore.RESET}\n",
                delay=0.005,
            )
            chat_history.append(
                f"AI Assistant: {assistant_response.msg.content}"
            )

            if "CAMEL_TASK_DONE" in user_response.msg.content:
                break

            input_msg = assistant_response.msg

        chat_history_str = "\n".join(chat_history)
        prompt = ROLEPLAY_SUMMARIZE_PROMPT.format(
            user_role=self.user_role_name,
            assistant_role=self.assistant_role_name,
            content=task.content,
            chat_history=chat_history_str,
            additional_info=task.additional_info,
        )
        req = BaseMessage.make_user_message(
            role_name="User",
            content=prompt,
        )
        response = self.summarize_agent.step(req, response_format=TaskResult)
        result_dict = json.loads(response.msg.content)
        task_result = TaskResult(**result_dict)
        task.result = task_result.content

        print(f"Task result: {task.result}\n")
        return TaskState.DONE