File size: 4,324 Bytes
fcaa164 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import textwrap
from typing import Any
from pydantic import ConfigDict
from camel.agents.programmed_agent_instruction import (
ProgrammableChatAgent,
ProgrammedAgentInstructionResult,
programmable_capability,
)
from camel.datagen.source2synth.models import (
ContextPrompt,
MultiHopQA,
)
from camel.messages import BaseMessage
class MultiHopGeneratorAgent(ProgrammableChatAgent):
r"""An agent specialized in generating multi-hop question-answer pairs.
This agent is designed to create complex questions that require multiple
steps of reasoning to answer. It analyzes context to identify related
facts and generates questions that require connecting these facts
logically.
Attributes:
model_config (ConfigDict): Configuration for model behavior.
system_message (BaseMessage): System message defining agent's role and
instructions.
"""
model_config = ConfigDict(arbitrary_types_allowed=True)
def __init__(self, **kwargs: Any) -> None:
r"""Initialize the MultiHopGeneratorAgent.
Args:
**kwargs (Any): Additional keyword arguments to pass to parent
class.
"""
super().__init__(**kwargs)
system_text: str = textwrap.dedent(
"""\
You are an expert at generating
multi-hop question-answer pairs.
For each context, you should:
1. Identify multiple related facts or pieces of information
2. Create questions that require reasoning across these multiple pieces
3. Ensure the reasoning chain is clear and logical
4. Generate questions that require at least 2-3 steps of reasoning
5. Include the reasoning steps in the answer
Give your response with this information:
Question: [Complex question requiring multiple reasoning steps]
Reasoning Steps:
1. [First reasoning step]
2. [Second reasoning step]
3. [Final reasoning step]
Answer: [Final answer]
Supporting Facts: [List of relevant text segments used]
""" # noqa: E501
)
self.system_message = BaseMessage.make_assistant_message(
role_name='Assistant', content=system_text
)
@programmable_capability
def generate_multi_hop_qa(
self, context: str
) -> ProgrammedAgentInstructionResult[MultiHopQA]:
r"""Generate a multi-hop question-answer pair from given context.
Args:
context (str): The input text context to generate QA from.
Returns:
ProgrammedAgentInstructionResult[MultiHopQA]: Result containing the
generated question, reasoning steps, answer, and supporting
facts.
Raises:
RuntimeError: If the agent fails to generate a response.
"""
context_prompt = ContextPrompt(
main_context=context, related_contexts=None
)
user_message = BaseMessage.make_user_message(
content=context_prompt.model_dump_json(), role_name="User"
)
response = self.step(
input_message=user_message, response_format=MultiHopQA
)
value = MultiHopQA.model_validate_json(response.msgs[0].content)
if response.msgs:
return ProgrammedAgentInstructionResult(
user_message=user_message,
agent_message=response.msgs[0],
value=value,
)
raise RuntimeError("No response from agent")
|