File size: 7,255 Bytes
fcaa164 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import json
from typing import Any, ClassVar, Dict, List, Literal, Optional, Union
from pydantic import BaseModel
from typing_extensions import Self
from camel.agents import ChatAgent
from camel.data_collector.base import BaseDataCollector
from camel.messages import BaseMessage
from camel.messages.conversion.conversation_models import (
ShareGPTConversation,
ShareGPTMessage,
)
from camel.schemas import OpenAISchemaConverter
from camel.toolkits import FunctionTool
FROM_HASH = {
"human": "human",
"gpt": "gpt",
"observation": "human",
"function_call": "gpt",
}
# ruff: noqa: E501
DEFAULT_CONVERTER_PROMPTS = """
Extract key entities and attributes from the conversations
and convert them into a structured JSON format.
For example:
System: You are a helpful assistant
Tools: [{"name": "get_release_date", "arguments": ["Portal"]}]
User: When is the release date of the video game Portal?
Assistant: The release date of the video game Portal is October 9, 2007.
Your output should be:
{
"system": "You are a helpful assistant",
"tools": "[{"name": "get_release_date", "arguments": ["Portal"]}]",
"conversations": [
{"from": "human", "value": "When is the release date of the video game Portal?"},
{"from": "gpt", "value": "The release date of the video game Portal is October 9, 2007."}
]
}
"""
class ConversationItem(BaseModel):
from_: Literal["human", "gpt", "function_call", "observation"]
value: str
class Config:
fields: ClassVar[Dict[str, str]] = {"from_": "from"}
extra = "forbid"
class ShareGPTData(BaseModel):
system: str
tools: str
conversations: List[ConversationItem]
class Config:
extra = "forbid"
class ShareGPTDataCollector(BaseDataCollector):
def __init__(self) -> None:
super().__init__()
self.system_message: Optional[BaseMessage] = None
self.agent_name: Optional[str] = None
self.tools: List[FunctionTool] = []
def record(
self,
agent: Union[List[ChatAgent], ChatAgent],
) -> Self:
r"""Inject an agent into the data collector."""
if not self.agent_name:
_agent = agent if isinstance(agent, ChatAgent) else agent[0]
self.agent_name = _agent.role_name
self.system_message = _agent._system_message
self.tools += list(_agent.tool_dict.values())
super().record(agent)
return self
def convert(self) -> Dict[str, Any]:
r"""Convert the collected data into a dictionary."""
if self.agent_name is None:
raise ValueError("No agent injected")
history = self.get_agent_history(self.agent_name)
if not history:
raise ValueError("No data collected.")
data = dict(
system=self.system_message.content if self.system_message else "",
tools=json.dumps(
[t.get_openai_tool_schema()["function"] for t in self.tools]
),
conversations=[],
)
conversations: List[Any] = []
for _data in history:
role, message = _data.role, _data
if role == "user":
conversations.append(
{"from": "human", "value": message.message}
)
elif role == "assistant":
if message.function_call:
conversations.append(
{
"from": "function_call",
"value": json.dumps(message.function_call),
}
)
else:
conversations.append(
{"from": "gpt", "value": message.message}
)
elif role == "function" or role == "tool":
conversations.append(
{
"from": "observation",
"value": json.dumps(message.message), # type: ignore[attr-defined]
}
)
data["conversations"] = conversations
self.data.append(data)
return data
def llm_convert(
self,
converter: Optional[OpenAISchemaConverter] = None,
prompt: Optional[str] = None,
) -> Dict[str, Any]:
r"""Convert collected data using an LLM schema converter.
Args:
converter (Optional[OpenAISchemaConverter], optional):
The converter to use. (default: :obj:`OpenAISchemaConverter`)
prompt (Optional[str], optional): Prompt to guide the conversion.
(default: :obj:`DEFAULT_CONVERTER_PROMPTS`)
Returns:
Dict[str, str]: The converted data.
Raises:
ValueError: If no agent is injected or data cannot be collected.
"""
prompt = prompt or DEFAULT_CONVERTER_PROMPTS
converter = converter or OpenAISchemaConverter()
system = self.system_message.content if self.system_message else ""
context = [f"System: {system}\n"]
context.append(
"Tools: "
+ json.dumps(
[t.get_openai_tool_schema()["function"] for t in self.tools]
)
)
for _data in self.get_agent_history(str(self.agent_name)):
role, message = _data.role, _data
prefix = (
f"{role}: " if role != "user" else "User: " + f"{_data.name}: "
)
if message.function_call:
context.append(prefix + json.dumps(message.function_call))
elif role == "function" or role == "tool":
context.append(prefix + json.dumps(message.message)) # type: ignore[attr-defined]
else:
context.append(prefix + str(message.message))
return converter.convert(
"\n".join(context), ShareGPTData, prompt
).model_dump()
@staticmethod
def to_sharegpt_conversation(data: Dict[str, Any]) -> ShareGPTConversation:
messages = [
ShareGPTMessage(from_="system", value=data["system"]) # type: ignore[call-arg]
]
for item in data["conversations"]:
messages.append(
ShareGPTMessage( # type: ignore[call-arg]
from_=FROM_HASH[item["from"]],
value=item["value"],
)
)
return ShareGPTConversation(root=messages)
|