File size: 7,851 Bytes
fcaa164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
from typing import Any, Dict, List, Optional, Type, Union

from openai import AsyncStream, Stream
from pydantic import BaseModel

from camel.configs import OPENROUTER_API_PARAMS, OpenRouterConfig
from camel.messages import OpenAIMessage
from camel.models._utils import try_modify_message_with_format
from camel.models.openai_compatible_model_v2 import OpenAICompatibleModelV2
from camel.types import (
    ChatCompletion,
    ChatCompletionChunk,
    ModelType,
)
from camel.utils import (
    BaseTokenCounter,
    api_keys_required,
)


class OpenRouterModel(OpenAICompatibleModelV2):
    r"""LLM API served by OpenRouter in a unified OpenAICompatibleModel
    interface.

    Args:
        model_type (Union[ModelType, str]): Model for which a backend is
            created.
        model_config_dict (Optional[Dict[str, Any]], optional): A dictionary
            that will be fed into:obj:`openai.ChatCompletion.create()`.
            If:obj:`None`, :obj:`GroqConfig().as_dict()` will be used.
            (default: :obj:`None`)
        api_key (Optional[str], optional): The API key for authenticating
            with the OpenRouter service. (default: :obj:`None`).
        url (Optional[str], optional): The url to the OpenRouter service.
            (default: :obj:`None`)
        token_counter (Optional[BaseTokenCounter], optional): Token counter to
            use for the model. If not provided, :obj:`OpenAITokenCounter(
            ModelType.GPT_4O_MINI)` will be used.
            (default: :obj:`None`)
        timeout (Optional[float], optional): The timeout value in seconds for
            API calls. If not provided, will fall back to the MODEL_TIMEOUT
            environment variable or default to 180 seconds.
            (default: :obj:`None`)
    """

    @api_keys_required([("api_key", "OPENROUTER_API_KEY")])
    def __init__(
        self,
        model_type: Union[ModelType, str],
        model_config_dict: Optional[Dict[str, Any]] = None,
        api_key: Optional[str] = None,
        url: Optional[str] = None,
        token_counter: Optional[BaseTokenCounter] = None,
        timeout: Optional[float] = None,
    ) -> None:
        if model_config_dict is None:
            model_config_dict = OpenRouterConfig().as_dict()
        api_key = api_key or os.environ.get("OPENROUTER_API_KEY")
        url = url or os.environ.get(
            "OPENROUTER_API_BASE_URL", "https://openrouter.ai/api/v1"
        )
        timeout = timeout or float(os.environ.get("MODEL_TIMEOUT", 180))
        
        super().__init__(
            model_type=model_type,
            model_config_dict=model_config_dict,
            api_key=api_key,
            url=url,
            token_counter=token_counter,
            timeout=timeout,
        )

    def _prepare_request(
        self,
        messages: List[OpenAIMessage],
        response_format: Optional[Type[BaseModel]] = None,
        tools: Optional[List[Dict[str, Any]]] = None,
    ) -> Dict[str, Any]:
        request_config = self.model_config_dict.copy()
        if tools:
            request_config["tools"] = tools
        elif response_format:
            try_modify_message_with_format(messages[-1], response_format)
            request_config["response_format"] = {"type": "json_object"}

        return request_config

    def _run(
        self,
        messages: List[OpenAIMessage],
        response_format: Optional[type[BaseModel]] = None,
        tools: Optional[List[Dict[str, Any]]] = None,
    ) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]:
        r"""Runs inference of OpenAI chat completion.

        Args:
            messages (List[OpenAIMessage]): Message list with the chat history
                in OpenAI API format.
            response_format (Optional[Type[BaseModel]]): The format of the
                response.
            tools (Optional[List[Dict[str, Any]]]): The schema of the tools to
                use for the request.

        Returns:
            Union[ChatCompletion, Stream[ChatCompletionChunk]]:
                `ChatCompletion` in the non-stream mode, or
                `Stream[ChatCompletionChunk]` in the stream mode.
        """
        request_config = self._prepare_request(
            messages, response_format, tools
        )

        response = self._client.chat.completions.create(
            messages=messages,
            model=self.model_type,
        )

        return response

    async def _arun(
        self,
        messages: List[OpenAIMessage],
        response_format: Optional[type[BaseModel]] = None,
        tools: Optional[List[Dict[str, Any]]] = None,
    ) -> Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]:
        r"""Runs inference of OpenRouter chat completion asynchronously.

        Args:
            messages (List[OpenAIMessage]): Message list with the chat history
                in OpenAI API format.
            response_format (Optional[Type[BaseModel]]): The format of the
                response.
            tools (Optional[List[Dict[str, Any]]]): The schema of the tools to
                use for the request.

        Returns:
            Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]:
                `ChatCompletion` in the non-stream mode, or
                `AsyncStream[ChatCompletionChunk]` in the stream mode.
        """
        request_config = self._prepare_request(
            messages, response_format, tools
        )

        response = await self._async_client.chat.completions.create(
            messages=messages,
            model=self.model_type,
            **request_config,
        )

        return response
    
    def run(
        self,
        messages: List[OpenAIMessage],
        response_format: Optional[type[BaseModel]] = None,
        tools: Optional[List[Dict[str, Any]]] = None,
    ) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]:
        """
        Public synchronous entrypoint, required by the abstract base.
        """
        return self._run(messages, response_format=response_format, tools=tools)

    async def arun(
        self,
        messages: List[OpenAIMessage],
        response_format: Optional[type[BaseModel]] = None,
        tools: Optional[List[Dict[str, Any]]] = None,
    ) -> Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]:
        """
        Public async entrypoint, required by the abstract base.
        """
        return await self._arun(messages, response_format=response_format, tools=tools)

    def check_model_config(self):
        r"""Check whether the model configuration contains any unexpected
        arguments to OpenRouter API. But OpenRouter API does not have any
        additional arguments to check.

        Raises:
            ValueError: If the model configuration dictionary contains any
                unexpected arguments to OpenRouter API.
        """
        for param in self.model_config_dict:
            if param not in OPENROUTER_API_PARAMS:
                raise ValueError(
                    f"Unexpected argument `{param}` is "
                    "input into OpenRouter model backend."
                )