File size: 9,961 Bytes
fcaa164 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
from dotenv import load_dotenv
from utils.src.utils import get_json_from_response
from utils.src.model_utils import parse_pdf
import json
import random
import os
from camel.models import ModelFactory
from camel.agents import ChatAgent
from tenacity import retry, stop_after_attempt
from docling_core.types.doc import ImageRefMode, PictureItem, TableItem
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
from pathlib import Path
import PIL
from marker.models import create_model_dict
from utils.wei_utils import *
from utils.pptx_utils import *
from utils.critic_utils import *
import torch
from jinja2 import Template
import re
import argparse
load_dotenv()
IMAGE_RESOLUTION_SCALE = 5.0
pipeline_options = PdfPipelineOptions()
pipeline_options.images_scale = IMAGE_RESOLUTION_SCALE
pipeline_options.generate_page_images = True
pipeline_options.generate_picture_images = True
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
@retry(stop=stop_after_attempt(5))
def parse_raw(args, actor_config, version=1):
raw_source = args.poster_path
markdown_clean_pattern = re.compile(r"<!--[\s\S]*?-->")
raw_result = doc_converter.convert(raw_source)
raw_markdown = raw_result.document.export_to_markdown()
text_content = markdown_clean_pattern.sub("", raw_markdown)
if len(text_content) < 500:
print('\nParsing with docling failed, using marker instead\n')
parser_model = create_model_dict(device='cuda', dtype=torch.float16)
text_content, rendered = parse_pdf(raw_source, model_lst=parser_model, save_file=False)
if version == 1:
template = Template(open("utils/prompts/gen_page_raw_content.txt").read())
elif version == 2:
template = Template(open("utils/prompts/gen_page_raw_content_v2.txt").read())
# Get API key from environment variables
api_key = None
if args.model_name_t in ['4o', '4o-mini', 'gpt-4.1', 'gpt-4.1-mini', 'o1', 'o3', 'o3-mini']:
api_key = os.environ.get('OPENAI_API_KEY')
elif args.model_name_t in ['gemini', 'gemini-2.5-pro', 'gemini-2.5-flash']:
api_key = os.environ.get('GEMINI_API_KEY')
elif args.model_name_t in ['qwen', 'qwen-plus', 'qwen-max', 'qwen-long']:
api_key = os.environ.get('QWEN_API_KEY')
elif args.model_name_t.startswith('openrouter_'):
api_key = os.environ.get('OPENROUTER_API_KEY')
elif args.model_name_t in ['zhipuai']:
api_key = os.environ.get('ZHIPUAI_API_KEY')
if args.model_name_t.startswith('vllm_qwen'):
actor_model = ModelFactory.create(
model_platform=actor_config['model_platform'],
model_type=actor_config['model_type'],
model_config_dict=actor_config['model_config'],
url=actor_config['url'],
api_key=api_key,
)
else:
actor_model = ModelFactory.create(
model_platform=actor_config['model_platform'],
model_type=actor_config['model_type'],
model_config_dict=actor_config['model_config'],
api_key=api_key,
)
actor_sys_msg = 'You are the author of the paper, and you will create a poster for the paper.'
actor_agent = ChatAgent(
system_message=actor_sys_msg,
model=actor_model,
message_window_size=10,
token_limit=actor_config.get('token_limit', None)
)
while True:
prompt = template.render(
markdown_document=text_content,
)
actor_agent.reset()
response = actor_agent.step(prompt)
input_token, output_token = account_token(response)
content_json = get_json_from_response(response.msgs[0].content)
if len(content_json) > 0:
break
print('Error: Empty response, retrying...')
if args.model_name_t.startswith('vllm_qwen'):
text_content = text_content[:80000]
if len(content_json['sections']) > 9:
# First 2 sections + randomly select 5 sections + last 2 sections
selected_sections = content_json['sections'][:2] + random.sample(content_json['sections'][2:-2], 5) + content_json['sections'][-2:]
content_json['sections'] = selected_sections
has_title = False
for section in content_json['sections']:
if type(section) != dict or not 'title' in section or not 'content' in section:
print(f"Ouch! The response is invalid, the LLM is not following the format :(")
print('Trying again...')
raise
if 'title' in section['title'].lower():
has_title = True
if not has_title:
print('Ouch! The response is invalid, the LLM is not following the format :(')
raise
os.makedirs('contents', exist_ok=True)
json.dump(content_json, open(f'contents/{args.poster_name}_raw_content.json', 'w'), indent=4)
return input_token, output_token, raw_result
def gen_image_and_table(args, conv_res):
input_token, output_token = 0, 0
raw_source = args.poster_path
output_dir = Path(f'generated_project_pages/images_and_tables/{args.poster_name}')
output_dir.mkdir(parents=True, exist_ok=True)
doc_filename = args.poster_name
# Save page images
for page_no, page in conv_res.document.pages.items():
page_no = page.page_no
page_image_filename = output_dir / f"{doc_filename}-{page_no}.png"
with page_image_filename.open("wb") as fp:
page.image.pil_image.save(fp, format="PNG")
# Save images of figures and tables
table_counter = 0
picture_counter = 0
for element, _level in conv_res.document.iterate_items():
if isinstance(element, TableItem):
table_counter += 1
element_image_filename = (
output_dir / f"{doc_filename}-table-{table_counter}.png"
)
with element_image_filename.open("wb") as fp:
element.get_image(conv_res.document).save(fp, "PNG")
if isinstance(element, PictureItem):
picture_counter += 1
element_image_filename = (
output_dir / f"{doc_filename}-picture-{picture_counter}.png"
)
with element_image_filename.open("wb") as fp:
element.get_image(conv_res.document).save(fp, "PNG")
# Save markdown with embedded pictures
md_filename = output_dir / f"{doc_filename}-with-images.md"
conv_res.document.save_as_markdown(md_filename, image_mode=ImageRefMode.EMBEDDED)
# Save markdown with externally referenced pictures
md_filename = output_dir / f"{doc_filename}-with-image-refs.md"
conv_res.document.save_as_markdown(md_filename, image_mode=ImageRefMode.REFERENCED)
# Save HTML with externally referenced pictures
html_filename = output_dir / f"{doc_filename}-with-image-refs.html"
conv_res.document.save_as_html(html_filename, image_mode=ImageRefMode.REFERENCED)
tables = {}
table_index = 1
for table in conv_res.document.tables:
caption = table.caption_text(conv_res.document)
if len(caption) > 0:
table_img_path = f'generated_project_pages/images_and_tables/{args.poster_name}/{args.poster_name}-table-{table_index}.png'
assests_table_path = f'assets/{args.poster_name}-table-{table_index}.png'
table_img = PIL.Image.open(table_img_path)
tables[str(table_index)] = {
'caption': caption,
'table_path': assests_table_path,
# 'assests_table_path': assests_table_path,
'width': table_img.width,
'height': table_img.height,
'figure_size': table_img.width * table_img.height,
'figure_aspect': table_img.width / table_img.height,
}
table_index += 1
images = {}
image_index = 1
for image in conv_res.document.pictures:
caption = image.caption_text(conv_res.document)
if len(caption) > 0:
image_img_path = f'generated_project_pages/images_and_tables/{args.poster_name}/{args.poster_name}-picture-{image_index}.png'
assests_image_path = f'assets/{args.poster_name}-picture-{image_index}.png'
image_img = PIL.Image.open(image_img_path)
images[str(image_index)] = {
'caption': caption,
'image_path': assests_image_path,
# 'assests_image_path': assests_image_path,
'width': image_img.width,
'height': image_img.height,
'figure_size': image_img.width * image_img.height,
'figure_aspect': image_img.width / image_img.height,
}
image_index += 1
json.dump(images, open(f'generated_project_pages/images_and_tables/{args.poster_name}_images.json', 'w'), indent=4)
json.dump(tables, open(f'generated_project_pages/images_and_tables/{args.poster_name}_tables.json', 'w'), indent=4)
return input_token, output_token, images, tables
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--poster_name', type=str, default=None)
parser.add_argument('--model_name', type=str, default='4o')
parser.add_argument('--poster_path', type=str, required=True)
parser.add_argument('--index', type=int, default=0)
args = parser.parse_args()
agent_config = get_agent_config(args.model_name)
if args.poster_name is None:
args.poster_name = args.poster_path.split('/')[-1].replace('.pdf', '').replace(' ', '_')
# Parse raw content
input_token, output_token = parse_raw(args, agent_config)
# Generate images and tables
_, _ = gen_image_and_table(args)
print(f'Token consumption: {input_token} -> {output_token}')
|