File size: 16,223 Bytes
fcaa164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
"""
Template analyzer for project page generation.
Analyzes existing project page templates to understand structure and style.
"""

import os
import json
import re
from bs4 import BeautifulSoup
from pathlib import Path
import yaml
from jinja2 import Environment, StrictUndefined

class ProjectPageTemplateAnalyzer:
    """Analyzes project page templates to extract structure and styling patterns."""
    
    def __init__(self, template_dir="project_templates"):
        self.template_dir = Path(template_dir)
        self.template_dir.mkdir(exist_ok=True)
        self.templates = {}
        self.common_patterns = {}
        
    def analyze_html_template(self, html_file_path):
        """
        Analyze an HTML template file to extract structure and styling.
        
        Args:
            html_file_path: Path to the HTML template file
            
        Returns:
            dict: Analysis results including structure, styling, and patterns
        """
        try:
            with open(html_file_path, 'r', encoding='utf-8') as f:
                html_content = f.read()
            
            soup = BeautifulSoup(html_content, 'html.parser')
            
            analysis = {
                'file_path': html_file_path,
                'structure': self._extract_structure(soup),
                'styling': self._extract_styling(soup),
                'sections': self._extract_sections(soup),
                'components': self._extract_components(soup),
                'meta_info': self._extract_meta_info(soup)
            }
            
            return analysis
            
        except Exception as e:
            print(f"Error analyzing template {html_file_path}: {e}")
            return None
    
    def _extract_structure(self, soup):
        """Extract the overall structure of the HTML document."""
        structure = {
            'doctype': soup.find('!DOCTYPE') is not None,
            'html_lang': soup.html.get('lang', 'en') if soup.html else 'en',
            'head_sections': [],
            'body_sections': [],
            'main_content': None,
            'navigation': None,
            'footer': None
        }
        
        # Extract head sections
        if soup.head:
            for tag in soup.head.find_all(['meta', 'link', 'script', 'title']):
                structure['head_sections'].append({
                    'tag': tag.name,
                    'attrs': dict(tag.attrs)
                })
        
        # Extract body structure
        if soup.body:
            for section in soup.body.find_all(['header', 'nav', 'main', 'section', 'article', 'aside', 'footer']):
                structure['body_sections'].append({
                    'tag': section.name,
                    'id': section.get('id', ''),
                    'class': section.get('class', []),
                    'content_type': self._identify_content_type(section)
                })
        
        return structure
    
    def _extract_styling(self, soup):
        """Extract CSS styling information."""
        styling = {
            'inline_styles': [],
            'external_css': [],
            'color_scheme': [],
            'typography': {},
            'layout': {}
        }
        
        # Extract inline styles
        for tag in soup.find_all(style=True):
            styling['inline_styles'].append({
                'tag': tag.name,
                'style': tag.get('style', '')
            })
        
        # Extract external CSS links
        for link in soup.find_all('link', rel='stylesheet'):
            styling['external_css'].append(link.get('href', ''))
        
        # Extract color information
        color_pattern = re.compile(r'#[0-9a-fA-F]{3,6}|rgb\([^)]+\)|rgba\([^)]+\)')
        for tag in soup.find_all(style=True):
            colors = color_pattern.findall(tag.get('style', ''))
            styling['color_scheme'].extend(colors)
        
        # Extract typography patterns
        for tag in soup.find_all(['h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'p']):
            font_size = re.search(r'font-size:\s*([^;]+)', tag.get('style', ''))
            if font_size:
                styling['typography'][tag.name] = font_size.group(1)
        
        return styling
    
    def _extract_sections(self, soup):
        """Extract content sections and their organization."""
        sections = []
        
        for section in soup.find_all(['section', 'article', 'div'], class_=True):
            section_info = {
                'tag': section.name,
                'id': section.get('id', ''),
                'classes': section.get('class', []),
                'content': self._extract_section_content(section),
                'images': self._extract_images(section),
                'tables': self._extract_tables(section)
            }
            sections.append(section_info)
        
        return sections
    
    def _extract_components(self, soup):
        """Extract reusable components and their patterns."""
        components = {
            'navigation': self._extract_navigation(soup),
            'hero_section': self._extract_hero_section(soup),
            'content_blocks': self._extract_content_blocks(soup),
            'image_galleries': self._extract_image_galleries(soup),
            'contact_forms': self._extract_contact_forms(soup)
        }
        
        return components
    
    def _extract_meta_info(self, soup):
        """Extract meta information and SEO elements."""
        meta_info = {
            'title': soup.title.string if soup.title else '',
            'meta_tags': [],
            'open_graph': {},
            'twitter_cards': {}
        }
        
        for meta in soup.find_all('meta'):
            meta_info['meta_tags'].append({
                'name': meta.get('name', ''),
                'content': meta.get('content', ''),
                'property': meta.get('property', '')
            })
            
            # Extract Open Graph tags
            if meta.get('property', '').startswith('og:'):
                meta_info['open_graph'][meta.get('property')] = meta.get('content', '')
            
            # Extract Twitter Card tags
            if meta.get('name', '').startswith('twitter:'):
                meta_info['twitter_cards'][meta.get('name')] = meta.get('content', '')
        
        return meta_info
    
    def _identify_content_type(self, element):
        """Identify the type of content in an element."""
        text = element.get_text().lower()
        
        if any(word in text for word in ['abstract', 'summary', 'overview']):
            return 'abstract'
        elif any(word in text for word in ['introduction', 'background']):
            return 'introduction'
        elif any(word in text for word in ['method', 'approach', 'methodology']):
            return 'methodology'
        elif any(word in text for word in ['result', 'experiment', 'evaluation']):
            return 'results'
        elif any(word in text for word in ['conclusion', 'discussion', 'future']):
            return 'conclusion'
        elif any(word in text for word in ['contact', 'author', 'team']):
            return 'contact'
        else:
            return 'general'
    
    def _extract_section_content(self, element):
        """Extract text content from a section."""
        content = {
            'headings': [],
            'paragraphs': [],
            'lists': [],
            'code_blocks': []
        }
        
        for heading in element.find_all(['h1', 'h2', 'h3', 'h4', 'h5', 'h6']):
            content['headings'].append({
                'level': int(heading.name[1]),
                'text': heading.get_text().strip()
            })
        
        for p in element.find_all('p'):
            content['paragraphs'].append(p.get_text().strip())
        
        for ul in element.find_all(['ul', 'ol']):
            items = [li.get_text().strip() for li in ul.find_all('li')]
            content['lists'].append({
                'type': ul.name,
                'items': items
            })
        
        for code in element.find_all(['code', 'pre']):
            content['code_blocks'].append({
                'type': code.name,
                'content': code.get_text().strip()
            })
        
        return content
    
    def _extract_images(self, element):
        """Extract image information from an element."""
        images = []
        for img in element.find_all('img'):
            images.append({
                'src': img.get('src', ''),
                'alt': img.get('alt', ''),
                'title': img.get('title', ''),
                'class': img.get('class', [])
            })
        return images
    
    def _extract_tables(self, element):
        """Extract table information from an element."""
        tables = []
        for table in element.find_all('table'):
            table_info = {
                'class': table.get('class', []),
                'headers': [],
                'rows': []
            }
            
            # Extract headers
            for th in table.find_all('th'):
                table_info['headers'].append(th.get_text().strip())
            
            # Extract rows
            for tr in table.find_all('tr'):
                row = [td.get_text().strip() for td in tr.find_all('td')]
                if row:
                    table_info['rows'].append(row)
            
            tables.append(table_info)
        
        return tables
    
    def _extract_navigation(self, soup):
        """Extract navigation structure."""
        nav = soup.find('nav')
        if nav:
            return {
                'links': [a.get('href', '') for a in nav.find_all('a')],
                'texts': [a.get_text().strip() for a in nav.find_all('a')],
                'structure': self._extract_nav_structure(nav)
            }
        return None
    
    def _extract_nav_structure(self, nav_element):
        """Extract the hierarchical structure of navigation."""
        structure = []
        for item in nav_element.find_all(['a', 'li'], recursive=False):
            if item.name == 'a':
                structure.append({
                    'type': 'link',
                    'text': item.get_text().strip(),
                    'href': item.get('href', '')
                })
            elif item.name == 'li':
                sub_items = []
                for sub_item in item.find_all('a'):
                    sub_items.append({
                        'text': sub_item.get_text().strip(),
                        'href': sub_item.get('href', '')
                    })
                structure.append({
                    'type': 'group',
                    'items': sub_items
                })
        return structure
    
    def _extract_hero_section(self, soup):
        """Extract hero section information."""
        hero = soup.find(['header', 'section'], class_=re.compile(r'hero|banner|intro'))
        if hero:
            return {
                'title': hero.find(['h1', 'h2']).get_text().strip() if hero.find(['h1', 'h2']) else '',
                'subtitle': hero.find(['h2', 'h3', 'p']).get_text().strip() if hero.find(['h2', 'h3', 'p']) else '',
                'background_image': hero.find('img').get('src', '') if hero.find('img') else '',
                'cta_buttons': [a.get_text().strip() for a in hero.find_all('a', class_=re.compile(r'btn|button'))]
            }
        return None
    
    def _extract_content_blocks(self, soup):
        """Extract content block patterns."""
        blocks = []
        for block in soup.find_all(['div', 'section'], class_=re.compile(r'content|block|section')):
            blocks.append({
                'classes': block.get('class', []),
                'content_type': self._identify_content_type(block),
                'has_images': bool(block.find('img')),
                'has_tables': bool(block.find('table')),
                'has_code': bool(block.find(['code', 'pre']))
            })
        return blocks
    
    def _extract_image_galleries(self, soup):
        """Extract image gallery patterns."""
        galleries = []
        for gallery in soup.find_all(['div', 'section'], class_=re.compile(r'gallery|carousel|slider')):
            images = gallery.find_all('img')
            galleries.append({
                'image_count': len(images),
                'layout': 'grid' if 'grid' in str(gallery.get('class', [])) else 'carousel',
                'images': [img.get('src', '') for img in images]
            })
        return galleries
    
    def _extract_contact_forms(self, soup):
        """Extract contact form patterns."""
        forms = []
        for form in soup.find_all('form'):
            form_info = {
                'action': form.get('action', ''),
                'method': form.get('method', 'get'),
                'fields': []
            }
            
            for input_field in form.find_all(['input', 'textarea', 'select']):
                form_info['fields'].append({
                    'type': input_field.get('type', input_field.name),
                    'name': input_field.get('name', ''),
                    'placeholder': input_field.get('placeholder', ''),
                    'required': input_field.get('required') is not None
                })
            
            forms.append(form_info)
        
        return forms
    
    def analyze_multiple_templates(self, template_files):
        """
        Analyze multiple template files and find common patterns.
        
        Args:
            template_files: List of template file paths
            
        Returns:
            dict: Analysis results with common patterns
        """
        all_analyses = []
        
        for template_file in template_files:
            analysis = self.analyze_html_template(template_file)
            if analysis:
                all_analyses.append(analysis)
        
        # Find common patterns
        common_patterns = self._find_common_patterns(all_analyses)
        
        return {
            'individual_analyses': all_analyses,
            'common_patterns': common_patterns
        }
    
    def _find_common_patterns(self, analyses):
        """Find common patterns across multiple template analyses."""
        patterns = {
            'common_sections': [],
            'common_styles': [],
            'common_components': [],
            'color_schemes': [],
            'layout_patterns': []
        }
        
        # Analyze common sections
        all_sections = []
        for analysis in analyses:
            all_sections.extend(analysis['sections'])
        
        section_types = {}
        for section in all_sections:
            content_type = section.get('content_type', 'unknown')
            if content_type not in section_types:
                section_types[content_type] = 0
            section_types[content_type] += 1
        
        patterns['common_sections'] = [
            section_type for section_type, count in section_types.items()
            if count > len(analyses) * 0.5  # Appears in more than 50% of templates
        ]
        
        # Analyze common styles
        all_colors = []
        for analysis in analyses:
            all_colors.extend(analysis['styling']['color_scheme'])
        
        color_counts = {}
        for color in all_colors:
            if color not in color_counts:
                color_counts[color] = 0
            color_counts[color] += 1
        
        patterns['color_schemes'] = [
            color for color, count in color_counts.items()
            if count > len(analyses) * 0.3  # Appears in more than 30% of templates
        ]
        
        return patterns
    
    def save_analysis(self, analysis, output_path):
        """Save analysis results to a JSON file."""
        try:
            with open(output_path, 'w') as f:
                json.dump(analysis, f, indent=2)
            print(f"Analysis saved to {output_path}")
            return True
        except Exception as e:
            print(f"Error saving analysis: {e}")
            return False