File size: 11,225 Bytes
fcaa164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import copy
import warnings
from pathlib import Path
from typing import Iterable, Optional, Union

import numpy
from docling_core.types.doc import BoundingBox, DocItemLabel, TableCell
from docling_ibm_models.tableformer.data_management.tf_predictor import TFPredictor
from PIL import ImageDraw

from docling.datamodel.base_models import Page, Table, TableStructurePrediction
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
    AcceleratorDevice,
    AcceleratorOptions,
    TableFormerMode,
    TableStructureOptions,
)
from docling.datamodel.settings import settings
from docling.models.base_model import BasePageModel
from docling.utils.accelerator_utils import decide_device
from docling.utils.profiling import TimeRecorder


class TableStructureModel(BasePageModel):
    _model_repo_folder = "ds4sd--docling-models"
    _model_path = "model_artifacts/tableformer"

    def __init__(
        self,
        enabled: bool,
        artifacts_path: Optional[Path],
        options: TableStructureOptions,
        accelerator_options: AcceleratorOptions,
    ):
        self.options = options
        self.do_cell_matching = self.options.do_cell_matching
        self.mode = self.options.mode

        self.enabled = enabled
        if self.enabled:

            if artifacts_path is None:
                artifacts_path = self.download_models() / self._model_path
            else:
                # will become the default in the future
                if (artifacts_path / self._model_repo_folder).exists():
                    artifacts_path = (
                        artifacts_path / self._model_repo_folder / self._model_path
                    )
                elif (artifacts_path / self._model_path).exists():
                    warnings.warn(
                        "The usage of artifacts_path containing directly "
                        f"{self._model_path} is deprecated. Please point "
                        "the artifacts_path to the parent containing "
                        f"the {self._model_repo_folder} folder.",
                        DeprecationWarning,
                        stacklevel=3,
                    )
                    artifacts_path = artifacts_path / self._model_path

            if self.mode == TableFormerMode.ACCURATE:
                artifacts_path = artifacts_path / "accurate"
            else:
                artifacts_path = artifacts_path / "fast"

            # Third Party
            import docling_ibm_models.tableformer.common as c

            device = decide_device(accelerator_options.device)

            # Disable MPS here, until we know why it makes things slower.
            if device == AcceleratorDevice.MPS.value:
                device = AcceleratorDevice.CPU.value

            self.tm_config = c.read_config(f"{artifacts_path}/tm_config.json")
            self.tm_config["model"]["save_dir"] = artifacts_path
            self.tm_model_type = self.tm_config["model"]["type"]

            self.tf_predictor = TFPredictor(
                self.tm_config, device, accelerator_options.num_threads
            )
            self.scale = 2.0  # Scale up table input images to 144 dpi

    @staticmethod
    def download_models(
        local_dir: Optional[Path] = None, force: bool = False, progress: bool = False
    ) -> Path:
        from huggingface_hub import snapshot_download
        from huggingface_hub.utils import disable_progress_bars

        if not progress:
            disable_progress_bars()
        download_path = snapshot_download(
            repo_id="ds4sd/docling-models",
            force_download=force,
            local_dir=local_dir,
            revision="v2.1.0",
        )

        return Path(download_path)

    def draw_table_and_cells(
        self,
        conv_res: ConversionResult,
        page: Page,
        tbl_list: Iterable[Table],
        show: bool = False,
    ):
        assert page._backend is not None
        assert page.size is not None

        image = (
            page._backend.get_page_image()
        )  # make new image to avoid drawing on the saved ones

        scale_x = image.width / page.size.width
        scale_y = image.height / page.size.height

        draw = ImageDraw.Draw(image)

        for table_element in tbl_list:
            x0, y0, x1, y1 = table_element.cluster.bbox.as_tuple()
            y0 *= scale_x
            y1 *= scale_y
            x0 *= scale_x
            x1 *= scale_x

            draw.rectangle([(x0, y0), (x1, y1)], outline="red")

            for cell in table_element.cluster.cells:
                x0, y0, x1, y1 = cell.bbox.as_tuple()
                x0 *= scale_x
                x1 *= scale_x
                y0 *= scale_x
                y1 *= scale_y

                draw.rectangle([(x0, y0), (x1, y1)], outline="green")

            for tc in table_element.table_cells:
                if tc.bbox is not None:
                    x0, y0, x1, y1 = tc.bbox.as_tuple()
                    x0 *= scale_x
                    x1 *= scale_x
                    y0 *= scale_x
                    y1 *= scale_y

                    if tc.column_header:
                        width = 3
                    else:
                        width = 1
                    draw.rectangle([(x0, y0), (x1, y1)], outline="blue", width=width)
                    draw.text(
                        (x0 + 3, y0 + 3),
                        text=f"{tc.start_row_offset_idx}, {tc.start_col_offset_idx}",
                        fill="black",
                    )
        if show:
            image.show()
        else:
            out_path: Path = (
                Path(settings.debug.debug_output_path)
                / f"debug_{conv_res.input.file.stem}"
            )
            out_path.mkdir(parents=True, exist_ok=True)

            out_file = out_path / f"table_struct_page_{page.page_no:05}.png"
            image.save(str(out_file), format="png")

    def __call__(
        self, conv_res: ConversionResult, page_batch: Iterable[Page]
    ) -> Iterable[Page]:

        if not self.enabled:
            yield from page_batch
            return

        for page in page_batch:
            assert page._backend is not None
            if not page._backend.is_valid():
                yield page
            else:
                with TimeRecorder(conv_res, "table_structure"):

                    assert page.predictions.layout is not None
                    assert page.size is not None

                    page.predictions.tablestructure = (
                        TableStructurePrediction()
                    )  # dummy

                    in_tables = [
                        (
                            cluster,
                            [
                                round(cluster.bbox.l) * self.scale,
                                round(cluster.bbox.t) * self.scale,
                                round(cluster.bbox.r) * self.scale,
                                round(cluster.bbox.b) * self.scale,
                            ],
                        )
                        for cluster in page.predictions.layout.clusters
                        if cluster.label
                        in [DocItemLabel.TABLE, DocItemLabel.DOCUMENT_INDEX]
                    ]
                    if not len(in_tables):
                        yield page
                        continue

                    page_input = {
                        "width": page.size.width * self.scale,
                        "height": page.size.height * self.scale,
                        "image": numpy.asarray(page.get_image(scale=self.scale)),
                    }

                    table_clusters, table_bboxes = zip(*in_tables)

                    if len(table_bboxes):
                        for table_cluster, tbl_box in in_tables:

                            tokens = []
                            for c in table_cluster.cells:
                                # Only allow non empty stings (spaces) into the cells of a table
                                if len(c.text.strip()) > 0:
                                    new_cell = copy.deepcopy(c)
                                    new_cell.bbox = new_cell.bbox.scaled(
                                        scale=self.scale
                                    )

                                    tokens.append(new_cell.model_dump())
                            page_input["tokens"] = tokens

                            tf_output = self.tf_predictor.multi_table_predict(
                                page_input, [tbl_box], do_matching=self.do_cell_matching
                            )
                            table_out = tf_output[0]
                            table_cells = []
                            for element in table_out["tf_responses"]:

                                if not self.do_cell_matching:
                                    the_bbox = BoundingBox.model_validate(
                                        element["bbox"]
                                    ).scaled(1 / self.scale)
                                    text_piece = page._backend.get_text_in_rect(
                                        the_bbox
                                    )
                                    element["bbox"]["token"] = text_piece

                                tc = TableCell.model_validate(element)
                                if self.do_cell_matching and tc.bbox is not None:
                                    tc.bbox = tc.bbox.scaled(1 / self.scale)
                                table_cells.append(tc)

                            assert "predict_details" in table_out

                            # Retrieving cols/rows, after post processing:
                            num_rows = table_out["predict_details"].get("num_rows", 0)
                            num_cols = table_out["predict_details"].get("num_cols", 0)
                            otsl_seq = (
                                table_out["predict_details"]
                                .get("prediction", {})
                                .get("rs_seq", [])
                            )

                            tbl = Table(
                                otsl_seq=otsl_seq,
                                table_cells=table_cells,
                                num_rows=num_rows,
                                num_cols=num_cols,
                                id=table_cluster.id,
                                page_no=page.page_no,
                                cluster=table_cluster,
                                label=table_cluster.label,
                            )

                            page.predictions.tablestructure.table_map[
                                table_cluster.id
                            ] = tbl

                    # For debugging purposes:
                    if settings.debug.visualize_tables:
                        self.draw_table_and_cells(
                            conv_res,
                            page,
                            page.predictions.tablestructure.table_map.values(),
                        )

                yield page