File size: 24,258 Bytes
fcaa164 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 |
import bisect
import logging
import sys
from collections import defaultdict
from typing import Dict, List, Set, Tuple
from docling_core.types.doc import DocItemLabel, Size
from rtree import index
from docling.datamodel.base_models import BoundingBox, Cell, Cluster, OcrCell
_log = logging.getLogger(__name__)
class UnionFind:
"""Efficient Union-Find data structure for grouping elements."""
def __init__(self, elements):
self.parent = {elem: elem for elem in elements}
self.rank = {elem: 0 for elem in elements}
def find(self, x):
if self.parent[x] != x:
self.parent[x] = self.find(self.parent[x]) # Path compression
return self.parent[x]
def union(self, x, y):
root_x, root_y = self.find(x), self.find(y)
if root_x == root_y:
return
if self.rank[root_x] > self.rank[root_y]:
self.parent[root_y] = root_x
elif self.rank[root_x] < self.rank[root_y]:
self.parent[root_x] = root_y
else:
self.parent[root_y] = root_x
self.rank[root_x] += 1
def get_groups(self) -> Dict[int, List[int]]:
"""Returns groups as {root: [elements]}."""
groups = defaultdict(list)
for elem in self.parent:
groups[self.find(elem)].append(elem)
return groups
class SpatialClusterIndex:
"""Efficient spatial indexing for clusters using R-tree and interval trees."""
def __init__(self, clusters: List[Cluster]):
p = index.Property()
p.dimension = 2
self.spatial_index = index.Index(properties=p)
self.x_intervals = IntervalTree()
self.y_intervals = IntervalTree()
self.clusters_by_id: Dict[int, Cluster] = {}
for cluster in clusters:
self.add_cluster(cluster)
def add_cluster(self, cluster: Cluster):
bbox = cluster.bbox
self.spatial_index.insert(cluster.id, bbox.as_tuple())
self.x_intervals.insert(bbox.l, bbox.r, cluster.id)
self.y_intervals.insert(bbox.t, bbox.b, cluster.id)
self.clusters_by_id[cluster.id] = cluster
def remove_cluster(self, cluster: Cluster):
self.spatial_index.delete(cluster.id, cluster.bbox.as_tuple())
del self.clusters_by_id[cluster.id]
def find_candidates(self, bbox: BoundingBox) -> Set[int]:
"""Find potential overlapping cluster IDs using all indexes."""
spatial = set(self.spatial_index.intersection(bbox.as_tuple()))
x_candidates = self.x_intervals.find_containing(
bbox.l
) | self.x_intervals.find_containing(bbox.r)
y_candidates = self.y_intervals.find_containing(
bbox.t
) | self.y_intervals.find_containing(bbox.b)
return spatial.union(x_candidates).union(y_candidates)
def check_overlap(
self,
bbox1: BoundingBox,
bbox2: BoundingBox,
overlap_threshold: float,
containment_threshold: float,
) -> bool:
"""Check if two bboxes overlap sufficiently."""
area1, area2 = bbox1.area(), bbox2.area()
if area1 <= 0 or area2 <= 0:
return False
overlap_area = bbox1.intersection_area_with(bbox2)
if overlap_area <= 0:
return False
iou = overlap_area / (area1 + area2 - overlap_area)
containment1 = overlap_area / area1
containment2 = overlap_area / area2
return (
iou > overlap_threshold
or containment1 > containment_threshold
or containment2 > containment_threshold
)
class Interval:
"""Helper class for sortable intervals."""
def __init__(self, min_val: float, max_val: float, id: int):
self.min_val = min_val
self.max_val = max_val
self.id = id
def __lt__(self, other):
if isinstance(other, Interval):
return self.min_val < other.min_val
return self.min_val < other
class IntervalTree:
"""Memory-efficient interval tree for 1D overlap queries."""
def __init__(self):
self.intervals: List[Interval] = [] # Sorted by min_val
def insert(self, min_val: float, max_val: float, id: int):
interval = Interval(min_val, max_val, id)
bisect.insort(self.intervals, interval)
def find_containing(self, point: float) -> Set[int]:
"""Find all intervals containing the point."""
pos = bisect.bisect_left(self.intervals, point)
result = set()
# Check intervals starting before point
for interval in reversed(self.intervals[:pos]):
if interval.min_val <= point <= interval.max_val:
result.add(interval.id)
else:
break
# Check intervals starting at/after point
for interval in self.intervals[pos:]:
if point <= interval.max_val:
if interval.min_val <= point:
result.add(interval.id)
else:
break
return result
class LayoutPostprocessor:
"""Postprocesses layout predictions by cleaning up clusters and mapping cells."""
# Cluster type-specific parameters for overlap resolution
OVERLAP_PARAMS = {
"regular": {"area_threshold": 1.3, "conf_threshold": 0.05},
"picture": {"area_threshold": 2.0, "conf_threshold": 0.3},
"wrapper": {"area_threshold": 2.0, "conf_threshold": 0.2},
}
WRAPPER_TYPES = {
DocItemLabel.FORM,
DocItemLabel.KEY_VALUE_REGION,
DocItemLabel.TABLE,
DocItemLabel.DOCUMENT_INDEX,
}
SPECIAL_TYPES = WRAPPER_TYPES.union({DocItemLabel.PICTURE})
CONFIDENCE_THRESHOLDS = {
DocItemLabel.CAPTION: 0.5,
DocItemLabel.FOOTNOTE: 0.5,
DocItemLabel.FORMULA: 0.5,
DocItemLabel.LIST_ITEM: 0.5,
DocItemLabel.PAGE_FOOTER: 0.5,
DocItemLabel.PAGE_HEADER: 0.5,
DocItemLabel.PICTURE: 0.5,
DocItemLabel.SECTION_HEADER: 0.45,
DocItemLabel.TABLE: 0.5,
DocItemLabel.TEXT: 0.5, # 0.45,
DocItemLabel.TITLE: 0.45,
DocItemLabel.CODE: 0.45,
DocItemLabel.CHECKBOX_SELECTED: 0.45,
DocItemLabel.CHECKBOX_UNSELECTED: 0.45,
DocItemLabel.FORM: 0.45,
DocItemLabel.KEY_VALUE_REGION: 0.45,
DocItemLabel.DOCUMENT_INDEX: 0.45,
}
LABEL_REMAPPING = {
# DocItemLabel.DOCUMENT_INDEX: DocItemLabel.TABLE,
DocItemLabel.TITLE: DocItemLabel.SECTION_HEADER,
}
def __init__(self, cells: List[Cell], clusters: List[Cluster], page_size: Size):
"""Initialize processor with cells and clusters."""
"""Initialize processor with cells and spatial indices."""
self.cells = cells
self.page_size = page_size
self.regular_clusters = [
c for c in clusters if c.label not in self.SPECIAL_TYPES
]
self.special_clusters = [c for c in clusters if c.label in self.SPECIAL_TYPES]
# Build spatial indices once
self.regular_index = SpatialClusterIndex(self.regular_clusters)
self.picture_index = SpatialClusterIndex(
[c for c in self.special_clusters if c.label == DocItemLabel.PICTURE]
)
self.wrapper_index = SpatialClusterIndex(
[c for c in self.special_clusters if c.label in self.WRAPPER_TYPES]
)
def postprocess(self) -> Tuple[List[Cluster], List[Cell]]:
"""Main processing pipeline."""
self.regular_clusters = self._process_regular_clusters()
self.special_clusters = self._process_special_clusters()
# Remove regular clusters that are included in wrappers
contained_ids = {
child.id
for wrapper in self.special_clusters
if wrapper.label in self.SPECIAL_TYPES
for child in wrapper.children
}
self.regular_clusters = [
c for c in self.regular_clusters if c.id not in contained_ids
]
# Combine and sort final clusters
final_clusters = self._sort_clusters(
self.regular_clusters + self.special_clusters, mode="id"
)
for cluster in final_clusters:
cluster.cells = self._sort_cells(cluster.cells)
# Also sort cells in children if any
for child in cluster.children:
child.cells = self._sort_cells(child.cells)
return final_clusters, self.cells
def _process_regular_clusters(self) -> List[Cluster]:
"""Process regular clusters with iterative refinement."""
clusters = [
c
for c in self.regular_clusters
if c.confidence >= self.CONFIDENCE_THRESHOLDS[c.label]
]
# Apply label remapping
for cluster in clusters:
if cluster.label in self.LABEL_REMAPPING:
cluster.label = self.LABEL_REMAPPING[cluster.label]
# Initial cell assignment
clusters = self._assign_cells_to_clusters(clusters)
# Remove clusters with no cells
clusters = [cluster for cluster in clusters if cluster.cells]
# Handle orphaned cells
unassigned = self._find_unassigned_cells(clusters)
if unassigned:
next_id = max((c.id for c in clusters), default=0) + 1
orphan_clusters = []
for i, cell in enumerate(unassigned):
conf = 1.0
if isinstance(cell, OcrCell):
conf = cell.confidence
orphan_clusters.append(
Cluster(
id=next_id + i,
label=DocItemLabel.TEXT,
bbox=cell.bbox,
confidence=conf,
cells=[cell],
)
)
clusters.extend(orphan_clusters)
# Iterative refinement
prev_count = len(clusters) + 1
for _ in range(3): # Maximum 3 iterations
if prev_count == len(clusters):
break
prev_count = len(clusters)
clusters = self._adjust_cluster_bboxes(clusters)
clusters = self._remove_overlapping_clusters(clusters, "regular")
return clusters
def _process_special_clusters(self) -> List[Cluster]:
special_clusters = [
c
for c in self.special_clusters
if c.confidence >= self.CONFIDENCE_THRESHOLDS[c.label]
]
special_clusters = self._handle_cross_type_overlaps(special_clusters)
# Calculate page area from known page size
page_area = self.page_size.width * self.page_size.height
if page_area > 0:
# Filter out full-page pictures
special_clusters = [
cluster
for cluster in special_clusters
if not (
cluster.label == DocItemLabel.PICTURE
and cluster.bbox.area() / page_area > 0.90
)
]
for special in special_clusters:
contained = []
for cluster in self.regular_clusters:
overlap = cluster.bbox.intersection_area_with(special.bbox)
if overlap > 0:
containment = overlap / cluster.bbox.area()
if containment > 0.8:
contained.append(cluster)
if contained:
# Sort contained clusters by minimum cell ID:
contained = self._sort_clusters(contained, mode="id")
special.children = contained
# Adjust bbox only for Form and Key-Value-Region, not Table or Picture
if special.label in [DocItemLabel.FORM, DocItemLabel.KEY_VALUE_REGION]:
special.bbox = BoundingBox(
l=min(c.bbox.l for c in contained),
t=min(c.bbox.t for c in contained),
r=max(c.bbox.r for c in contained),
b=max(c.bbox.b for c in contained),
)
# Collect all cells from children
all_cells = []
for child in contained:
all_cells.extend(child.cells)
special.cells = self._deduplicate_cells(all_cells)
special.cells = self._sort_cells(special.cells)
picture_clusters = [
c for c in special_clusters if c.label == DocItemLabel.PICTURE
]
picture_clusters = self._remove_overlapping_clusters(
picture_clusters, "picture"
)
wrapper_clusters = [
c for c in special_clusters if c.label in self.WRAPPER_TYPES
]
wrapper_clusters = self._remove_overlapping_clusters(
wrapper_clusters, "wrapper"
)
return picture_clusters + wrapper_clusters
def _handle_cross_type_overlaps(self, special_clusters) -> List[Cluster]:
"""Handle overlaps between regular and wrapper clusters before child assignment.
In particular, KEY_VALUE_REGION proposals that are almost identical to a TABLE
should be removed.
"""
wrappers_to_remove = set()
for wrapper in special_clusters:
if wrapper.label not in self.WRAPPER_TYPES:
continue # only treat KEY_VALUE_REGION for now.
for regular in self.regular_clusters:
if regular.label == DocItemLabel.TABLE:
# Calculate overlap
overlap = regular.bbox.intersection_area_with(wrapper.bbox)
wrapper_area = wrapper.bbox.area()
overlap_ratio = overlap / wrapper_area
conf_diff = wrapper.confidence - regular.confidence
# If wrapper is mostly overlapping with a TABLE, remove the wrapper
if (
overlap_ratio > 0.9 and conf_diff < 0.1
): # self.OVERLAP_PARAMS["wrapper"]["conf_threshold"]): # 80% overlap threshold
wrappers_to_remove.add(wrapper.id)
break
# Filter out the identified wrappers
special_clusters = [
cluster
for cluster in special_clusters
if cluster.id not in wrappers_to_remove
]
return special_clusters
def _should_prefer_cluster(
self, candidate: Cluster, other: Cluster, params: dict
) -> bool:
"""Determine if candidate cluster should be preferred over other cluster based on rules.
Returns True if candidate should be preferred, False if not."""
# Rule 1: LIST_ITEM vs TEXT
if (
candidate.label == DocItemLabel.LIST_ITEM
and other.label == DocItemLabel.TEXT
):
# Check if areas are similar (within 20% of each other)
area_ratio = candidate.bbox.area() / other.bbox.area()
area_similarity = abs(1 - area_ratio) < 0.2
if area_similarity:
return True
# Rule 2: CODE vs others
if candidate.label == DocItemLabel.CODE:
# Calculate how much of the other cluster is contained within the CODE cluster
overlap = other.bbox.intersection_area_with(candidate.bbox)
containment = overlap / other.bbox.area()
if containment > 0.8: # other is 80% contained within CODE
return True
# If no label-based rules matched, fall back to area/confidence thresholds
area_ratio = candidate.bbox.area() / other.bbox.area()
conf_diff = other.confidence - candidate.confidence
if (
area_ratio <= params["area_threshold"]
and conf_diff > params["conf_threshold"]
):
return False
return True # Default to keeping candidate if no rules triggered rejection
def _select_best_cluster_from_group(
self,
group_clusters: List[Cluster],
params: dict,
) -> Cluster:
"""Select best cluster from a group of overlapping clusters based on all rules."""
current_best = None
for candidate in group_clusters:
should_select = True
for other in group_clusters:
if other == candidate:
continue
if not self._should_prefer_cluster(candidate, other, params):
should_select = False
break
if should_select:
if current_best is None:
current_best = candidate
else:
# If both clusters pass rules, prefer the larger one unless confidence differs significantly
if (
candidate.bbox.area() > current_best.bbox.area()
and current_best.confidence - candidate.confidence
<= params["conf_threshold"]
):
current_best = candidate
return current_best if current_best else group_clusters[0]
def _remove_overlapping_clusters(
self,
clusters: List[Cluster],
cluster_type: str,
overlap_threshold: float = 0.8,
containment_threshold: float = 0.8,
) -> List[Cluster]:
if not clusters:
return []
spatial_index = (
self.regular_index
if cluster_type == "regular"
else self.picture_index if cluster_type == "picture" else self.wrapper_index
)
# Map of currently valid clusters
valid_clusters = {c.id: c for c in clusters}
uf = UnionFind(valid_clusters.keys())
params = self.OVERLAP_PARAMS[cluster_type]
for cluster in clusters:
candidates = spatial_index.find_candidates(cluster.bbox)
candidates &= valid_clusters.keys() # Only keep existing candidates
candidates.discard(cluster.id)
for other_id in candidates:
if spatial_index.check_overlap(
cluster.bbox,
valid_clusters[other_id].bbox,
overlap_threshold,
containment_threshold,
):
uf.union(cluster.id, other_id)
result = []
for group in uf.get_groups().values():
if len(group) == 1:
result.append(valid_clusters[group[0]])
continue
group_clusters = [valid_clusters[cid] for cid in group]
best = self._select_best_cluster_from_group(group_clusters, params)
# Simple cell merging - no special cases
for cluster in group_clusters:
if cluster != best:
best.cells.extend(cluster.cells)
best.cells = self._deduplicate_cells(best.cells)
best.cells = self._sort_cells(best.cells)
result.append(best)
return result
def _select_best_cluster(
self,
clusters: List[Cluster],
area_threshold: float,
conf_threshold: float,
) -> Cluster:
"""Iteratively select best cluster based on area and confidence thresholds."""
current_best = None
for candidate in clusters:
should_select = True
for other in clusters:
if other == candidate:
continue
area_ratio = candidate.bbox.area() / other.bbox.area()
conf_diff = other.confidence - candidate.confidence
if area_ratio <= area_threshold and conf_diff > conf_threshold:
should_select = False
break
if should_select:
if current_best is None or (
candidate.bbox.area() > current_best.bbox.area()
and current_best.confidence - candidate.confidence <= conf_threshold
):
current_best = candidate
return current_best if current_best else clusters[0]
def _deduplicate_cells(self, cells: List[Cell]) -> List[Cell]:
"""Ensure each cell appears only once, maintaining order of first appearance."""
seen_ids = set()
unique_cells = []
for cell in cells:
if cell.id not in seen_ids:
seen_ids.add(cell.id)
unique_cells.append(cell)
return unique_cells
def _assign_cells_to_clusters(
self, clusters: List[Cluster], min_overlap: float = 0.2
) -> List[Cluster]:
"""Assign cells to best overlapping cluster."""
for cluster in clusters:
cluster.cells = []
for cell in self.cells:
if not cell.text.strip():
continue
best_overlap = min_overlap
best_cluster = None
for cluster in clusters:
if cell.bbox.area() <= 0:
continue
overlap = cell.bbox.intersection_area_with(cluster.bbox)
overlap_ratio = overlap / cell.bbox.area()
if overlap_ratio > best_overlap:
best_overlap = overlap_ratio
best_cluster = cluster
if best_cluster is not None:
best_cluster.cells.append(cell)
# Deduplicate cells in each cluster after assignment
for cluster in clusters:
cluster.cells = self._deduplicate_cells(cluster.cells)
return clusters
def _find_unassigned_cells(self, clusters: List[Cluster]) -> List[Cell]:
"""Find cells not assigned to any cluster."""
assigned = {cell.id for cluster in clusters for cell in cluster.cells}
return [
cell for cell in self.cells if cell.id not in assigned and cell.text.strip()
]
def _adjust_cluster_bboxes(self, clusters: List[Cluster]) -> List[Cluster]:
"""Adjust cluster bounding boxes to contain their cells."""
for cluster in clusters:
if not cluster.cells:
continue
cells_bbox = BoundingBox(
l=min(cell.bbox.l for cell in cluster.cells),
t=min(cell.bbox.t for cell in cluster.cells),
r=max(cell.bbox.r for cell in cluster.cells),
b=max(cell.bbox.b for cell in cluster.cells),
)
if cluster.label == DocItemLabel.TABLE:
# For tables, take union of current bbox and cells bbox
cluster.bbox = BoundingBox(
l=min(cluster.bbox.l, cells_bbox.l),
t=min(cluster.bbox.t, cells_bbox.t),
r=max(cluster.bbox.r, cells_bbox.r),
b=max(cluster.bbox.b, cells_bbox.b),
)
else:
cluster.bbox = cells_bbox
return clusters
def _sort_cells(self, cells: List[Cell]) -> List[Cell]:
"""Sort cells in native reading order."""
return sorted(cells, key=lambda c: (c.id))
def _sort_clusters(
self, clusters: List[Cluster], mode: str = "id"
) -> List[Cluster]:
"""Sort clusters in reading order (top-to-bottom, left-to-right)."""
if mode == "id": # sort in the order the cells are printed in the PDF.
return sorted(
clusters,
key=lambda cluster: (
(
min(cell.id for cell in cluster.cells)
if cluster.cells
else sys.maxsize
),
cluster.bbox.t,
cluster.bbox.l,
),
)
elif mode == "tblr": # Sort top-to-bottom, then left-to-right ("row first")
return sorted(
clusters, key=lambda cluster: (cluster.bbox.t, cluster.bbox.l)
)
elif mode == "lrtb": # Sort left-to-right, then top-to-bottom ("column first")
return sorted(
clusters, key=lambda cluster: (cluster.bbox.l, cluster.bbox.t)
)
else:
return clusters
|